(i) A curve has equation $y=x^{2}-4$. Find the x-coordinates of the points on the curve where $y=21$.
(ii) The curve $y=x^{2}-4$ is translated by $\binom{2}{0}$.

Write down an equation for the translated curve. You need not simplify your answer.

2

Fig. 2
Fig. 2 shows graphs A and B.
(i) State the transformation which maps graph A onto graph B.
(ii) The equation of graph A is $y=\mathrm{f}(x)$.

Which one of the following is the equation of graph B ?
$y=\mathrm{f}(x)+2$
$y=\mathrm{f}(x)-2$
$y=\mathrm{f}(x+2)$
$y=\mathrm{f}(x-2)$
$y=2 \mathrm{f}(x)$
$y=\mathrm{f}(x+3)$
$y=\mathrm{f}(x-3)$
$y=3 \mathrm{f}(x)$

3 You are given that $\mathrm{f}(x)=(x+3)(x-2)(x-5)$.
(i) Sketch the curve $y=\mathrm{f}(x)$.
(ii) Show that $\mathrm{f}(x)$ may be written as $x^{3}-4 x^{2}-11 x+30$.
(iii) Describe fully the transformation that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\mathrm{g}(x)$, where $\mathrm{g}(x)=x^{3}-4 x^{2}-11 x-6$.
(iv) Show that $\mathrm{g}(-1)=0$. Hence factorise $\mathrm{g}(x)$ completely.

4 (i) You are given that $\mathrm{f}(x)=(2 x-5)(x-1)(x-4)$.
(A) Sketch the graph of $y=\mathrm{f}(x)$.
(B) Show that $\mathrm{f}(x)=2 x^{3}-15 x^{2}+33 x-20$.
(ii) You are given that $\mathrm{g}(x)=2 x^{3}-15 x^{2}+33 x-40$.
(A) Show that $\mathrm{g}(5)=0$.
(B) Express $\mathrm{g}(x)$ as the product of a linear and quadratic factor.
(C) Hence show that the equation $\mathrm{g}(x)=0$ has only one real root.
(iii) Describe fully the transformation that maps $y=\mathrm{f}(x)$ onto $y=\mathrm{g}(x)$.

