- 1 (i) A curve has equation $y = x^2 4$. Find the *x*-coordinates of the points on the curve where y = 21. [2]
 - (ii) The curve $y = x^2 4$ is translated by $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

Write down an equation for the translated curve. You need not simplify your answer. [2]

2

- Fig. 2 shows graphs A and B.
- (i) State the transformation which maps graph A onto graph B.
- (ii) The equation of graph A is y = f(x).

Which one of the following is the equation of graph *B*?

y = f(x) + 2	y = f(x) - 2	y = f(x+2)	y = f(x - 2)	
y = 2f(x)	y = f(x+3)	y = f(x - 3)	y = 3f(x)	[2]

[2]

- 3 You are given that f(x) = (x+3)(x-2)(x-5).
 - (i) Sketch the curve y = f(x). [3]

[2]

[5]

- (ii) Show that f(x) may be written as $x^3 4x^2 11x + 30$.
- (iii) Describe fully the transformation that maps the graph of y = f(x) onto the graph of y = g(x), where $g(x) = x^3 - 4x^2 - 11x - 6$. [2]
- (iv) Show that g(-1) = 0. Hence factorise g(x) completely.
- 4 (i) You are given that f(x) = (2x-5)(x-1)(x-4).
 - (A) Sketch the graph of y = f(x). [3]
 - (B) Show that $f(x) = 2x^3 15x^2 + 33x 20$. [2]
 - (ii) You are given that $g(x) = 2x^3 15x^2 + 33x 40$.
 - (A) Show that g(5) = 0. [1]
 - (B) Express g(x) as the product of a linear and quadratic factor. [3]
 - (*C*) Hence show that the equation g(x) = 0 has only one real root. [2]
 - (iii) Describe fully the transformation that maps y = f(x) onto y = g(x). [2]