1	i	(3, 6)	2	1 each coord	
		grad AB = (8 - 4)/(71) or 4/8	M1	indep obtained	
		grad normal = −2 or ft	M1	for use of $m_1m_2 = -1$; condone stated/used as -2 with no working	
		perp bisector is $y - 6 = -2(x - 3)$ or ft their grad. of	14	only if 4/8 seen	le L
		normal (not AB) and/or midpoint correct step towards completion	M1 A1	or M1 for showing grad given line = −2 and M1 for showing (3, 6) fits given	
				line	6

	alt allow integration used: $\int_0^3 (-2x+12) dx = 27$ obtaining AB is $y - 8 =$ their $\frac{1}{2}(x - 7)$ oe $[y = \frac{1}{2}x + 4.5]$ $\int_0^3 (\frac{1}{2}x + 4.5) dx$ = 63/4 o.e. cao their area under AB = 45/4 o.e. cao	M1 M1 M1 A1 M1	DM = √13), A0 condone poor notation allow if seen, with correct line and limits seen/used as above ft from their AB allow only if at least some valid integration/area calculations for these trapezia seen if combined integration, so 63/4 not	
	45/4 o.e. without surds, isw	A1	MR: AMC used not DMC: lose B2 for D but then allow ft M1 for MC ² or MA ² [=4 ² + 2 ²] and M1 for ½ × MA × MC and A1 for 15 MR: intn used as D(0, 4) can score a max of M1, B0, M2 (eq M1 for their	ľ
	1/2 × (12 – their 4.5) × 3 (may be two triangles M1 each)	M2	coords of A or their M used or M1 for [MC] ² = 3 ² + 6 ² or 45 or [MD] ² = 3 ² + 1.5 ² or 11.25 oe and M1 for ½ × their MC × MD; all ft their M	
ii	Bisector crosses y axis at C (0, 12) seen or used AB crosses y axis at D (0, 4.5) seen or used	M1 B2	may be implicit in their area calcn M1 for 4 + their grad AB or for eqn AB is $y - 8 =$ their $\frac{1}{2}(x - 7)$ oe with	

2 $3x + 2y = 26$ or $y = -1.5x + 13$ isw 3 M1 for $3x + 2y = c$ or $y = -1.5x + c$ M1 for subst (2, 10) to find c or for or for $y - 10 =$ their gradient $\times (x - 2)$	3
--	---

3	x + 3(3x + 1) = 6 o.e.	M1	for subst <u>or</u> for rearrangement and multn to make one pair of coefficients the same <u>or</u> for both eqns in form ' <i>y</i> =' (condone one error)	
	10x = 3 or 10y = 19 o.e.	A1		
	(0.3, 1.9) or $x = 0.3$ and $y = 1.9$ o.e.	A1	graphical soln: (must be on graph paper)	
			M1 for each line, A1 for (0.3, 1.9) o.e	
			cao; allow B3 for (0.3, 1.9) o.e.	3

4	grad BC = $-\frac{1}{4}$ soi	2	M1 for $m_1m_2 = -1$ soi or for grad	
			AB = 4 or grad $BC = 1/4$	
	$y-3=-\frac{1}{4}(x-2)$ o.e. cao	1	e.g. $y = -0.25x + 3.5$	5
	14 or ft from their BC	2	M1 for subst $y = 0$ in their BC	

-		1 1 1 2 2 10	1	or M1 for $AB^2 = 4^2 + 8^2$ or 80 and	
5		grad AB = $8/4$ or 2 or $y = 2x - 10$ grad BC = $1/-2$ or $-\frac{1}{2}$ or	1 1	$BC^2 = 2^2 + 1^2 \text{ or } 5 \text{ and } AC^2 = 6^2 + 7^2 \text{ or } 6$	
		$y = -\frac{1}{2}x + 2.5$	-	85; M1 for $AC^2 = AB^2 + BC^2$ and 1 for	
		y = 72x + 2.3 product of grads = -1 [so perp]	1	[Pythag.] true so AB perp to BC;	
		(allow seen or used)		if 0, allow G1 for graph of A, B, C	3
	ii	midpt E of AC = $(6, 4.5)$	1		
		$AC^2 = (9-3)^2 + (8-1)^2 \text{ or } 85$	M1	allow seen in (i) only if used in (ii); or	
				$AE^2 = (9 - \text{their } 6)^2 + (8 - \text{their } 4.5)^2 \text{ or}$	
		rad = $\frac{1}{2}\sqrt{85}$ o.e.	A1 B2	rad. ² = 85/4 o.e. e.g. in circle eqn	
		$(x-6)^2 + (y-4.5)^2 = 85/4$ o.e.	DZ	M1 for $(x - a)^2 + (y - b)^2 = r^2$ soi or for lhs correct	
		$(5-6)^2 + (0-4.5)^2 = 1 + 81/4$ [=	1	some working shown; or 'angle in	
		85/4]		semicircle [=90°]'	6
	iii	$\overline{RE} = \overline{ED} $ (1)		o.e. ft their centre; or f $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$	
		$\overrightarrow{BE} = \overrightarrow{ED} = \begin{pmatrix} 1 \\ 4.5 \end{pmatrix}$	M1	o.e. It their centre; or $1 - BC = \begin{pmatrix} 1 \end{pmatrix}$	
		D has coords (6 + 1, 4.5 + 4.5) ft	M1	or (9 - 2, 8 + 1); condone mixtures of	
		or (7		vectors and coords. throughout part iii	
		(5+2,0+9)	A1	allow B3 for (7,9)	3
l	1	= (7, 9)			