Solution Bank

3

Pearson

	/1014/	AVAR		-
RHN		ехег	CISE	
1.0		UNU		

1 **a**
$$8^{\frac{1}{3}}$$

Use $a^{\frac{1}{m}} = \sqrt[m]{a}$, so $a^{\frac{1}{3}}$
 $= \sqrt[3]{a}$
 $= \sqrt[3]{a}$
 $= \sqrt[3]{8}$
 $= 2$
b $8^{-\frac{2}{3}} = \frac{1}{\frac{2}{3}} \left(\text{Use } a^{-m} = \frac{1}{a^{m}} \right)$
 $\left(\text{Use } a^{\frac{n}{m}} = (\sqrt[m]{a})n \right)$
 $8^{\frac{2}{3}} = (\sqrt[3]{8})^{2}$
 $8^{\frac{2}{3}} = 2^{2} = 4$
 $8^{-\frac{2}{3}} = \frac{1}{\frac{2}{3}}$
 $= \frac{1}{4}$
2 **a** $125^{\frac{4}{3}}$
 $a^{\frac{n}{m}} = \sqrt[m]{(a^{n})} \text{ or } (\sqrt[m]{a})^{n}$
 $= (\sqrt[3]{125})^{4}$
 $= 5^{4}$
 $= 625$
b $24x^{2} \div 18x^{\frac{4}{3}}$
 $(\text{Use } a^{m} \div a^{n} = a^{m-n})$
 $= \frac{24x^{2}}{4} = \frac{4x^{2}}{4}$

$$= \frac{18x^{\frac{1}{3}}}{3} \quad \left(\text{because } 2 - \frac{4}{3} = \frac{2}{3} \right)$$

a
$$\sqrt{80}$$

Use $\sqrt{bc} = \sqrt{b}\sqrt{c}$
 $= \sqrt{16} \times \sqrt{5}$
 $= 4\sqrt{5}$
 $(a = 4)$
b $(4 - \sqrt{5})^2 = (4 - \sqrt{5})(4 - \sqrt{5})$
 $= 4(4 - \sqrt{5}) - \sqrt{5}(4 - \sqrt{5})$
 $= 16 - 4\sqrt{5} - 4\sqrt{5} + 5$
 $= 21 - 8\sqrt{5}$
 $(b = 21 \text{ and } c = -8)$

4 a
$$(4+\sqrt{3})(4-\sqrt{3})$$

= $4(4-\sqrt{3})+\sqrt{3}(4-\sqrt{3})$
= $16-4\sqrt{3}+4\sqrt{3}-3$
= 13

b
$$\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} = \frac{26(4-\sqrt{3})}{(4+\sqrt{3})(4-\sqrt{3})}$$

$$= \frac{26(4-\sqrt{3})}{13}$$
$$= 8-2\sqrt{3}$$
 $(a=8 \text{ and } b=-2)$

5 a mean = $\frac{1 - \sqrt{k} + 2 + 5\sqrt{k} + 2\sqrt{k}}{3}$ $= \frac{3 + 6\sqrt{k}}{3}$ $= 1 + 2\sqrt{k}$ b range = $2 + 5\sqrt{k} - (1 - \sqrt{k})$ $= 1 + 6\sqrt{k}$

6 a $y^{-1} = \left(\frac{1}{25}x^4\right)^{-1}$ = $\frac{1}{\frac{1}{25}x^4}$ = $\frac{25}{x^4}$ = $25x^{-4}$

b
$$5y^{\frac{1}{2}} = 5\left(\frac{1}{25}x^4\right)^{\frac{1}{2}}$$

= $5\left(\frac{1}{5}x^2\right)$
= x^2

7 Area =
$$\frac{1}{2}h(a+b)$$

= $\frac{1}{2}(2\sqrt{2})(3+\sqrt{2}+5+3\sqrt{2})$
= $\sqrt{2}(8+4\sqrt{2})$
= $8\sqrt{2}+8$

The area of the trapezium is $8+8\sqrt{2}$ cm².

$$\frac{p+q}{p-q} = \frac{(3-2\sqrt{2})+(2-\sqrt{2})}{(3-2\sqrt{2})-(2-\sqrt{2})}$$
$$= \frac{5-3\sqrt{2}}{1-\sqrt{2}}$$
$$= \frac{(5-3\sqrt{2})}{(1-\sqrt{2})} \times \frac{(1+\sqrt{2})}{(1+\sqrt{2})}$$
$$= \frac{5+5\sqrt{2}-3\sqrt{2}-6}{1+\sqrt{2}-\sqrt{2}-2}$$
$$= \frac{-1+2\sqrt{2}}{-1}$$
$$= 1-2\sqrt{2} \ (m=1, n=-2)$$

Pearson

9 a
$$x^2 - 10x + 16 = (x - 8)(x - 2)$$

b Let $x = 8^{y}$ $8^{2y} - 10(8^{y}) + 16 = (8^{y} - 8)(8^{y} - 2) = 0$ So $8^{y} = 8$ or $8^{y} = 2$ y = 1 or $y = \frac{1}{3}$

10 a
$$x^{2}-8x = (x-4)^{2}-16$$

Complete the square for $x^{2}-8x-29$:
 $x^{2}-8x-29 = (x-4)^{2}-16-29$
 $= (x-4)^{2}-45$
($a = -4$ and $b = -45$)

b $x^2 - 8x - 29 = 0$ $(x-4)^2 - 45 = 0$ Use the result from part **a**: $(x-4)^2 = 45$ Take the square root of both sides: $x-4 = \pm\sqrt{45}$ $x = 4 \pm \sqrt{45}$ $\sqrt{45} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$ since $\sqrt{ab} = \sqrt{a}\sqrt{b}$ Roots are $4 \pm 3\sqrt{5}$ $(c = 4 \text{ and } d = \pm 3)$

11
$$f(a) = a(a-2) \text{ and } g(a) = a+5$$

 $a(a-2) = a+5$
 $a^2 - 2a - a - 5 = 0$
 $a^2 - 3a - 5 = 0$
Using the quadratic formula:
 $a = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(-5)}}{2(1)}$
 $= \frac{3 \pm \sqrt{29}}{2}$
 $= 4.19 \text{ or } -1.19$
As $a > 0$, $a = 4.19$ (3 s.f.)

Solution Bank

Pearson

12 a
$$f(x) = x^2 - 6x + 18$$

 $x^2 - 6x = (x-3)^2 - 9$
Complete the square for $x^2 - 6x + 18$:
 $x^2 - 6x + 18 = (x-3)^2 - 9 + 18$
 $= (x-3)^2 + 9$
 $a = 3$ and $b = 9$
b $y = x^2 - 6x + 18$
 $y = (x-3)^2 + 9$
 $(x-3)^2 \ge 0$

Squaring a number cannot give a negative result. The minimum value of $(x - 3)^2$ is 0, when x = 3. When x = 3, y = 9. *Q* is the point (3, 9). The curve crosses the *y*-axis where x = 0.

When x = 0, y = 18 *P* is the point (0, 18). The graph of $y = x^2 - 6x + 18$ is a \bigvee shape.

Use the information about *P* and *Q* to sketch the curve for $x \ge 0$; the part of the curve where x < 0 is not asked for.

12 c $y = (x-3)^2 + 9$ Put y = 41 into the equation of C. $41 = (x-3)^2 + 9$ Subtract 9 from both sides. $32 = (x-3)^2$ $(x-3)^2 = 32$ Take the square root of both sides. $x-3 = \pm\sqrt{32}$ $x = 3 \pm \sqrt{32}$ $x = 3 \pm \sqrt{32}$ $x - 3 = 4\sqrt{2}$ x-coordinate of R is $3 + 4\sqrt{2}$. The other value is $3 - 4\sqrt{2}$ which is less than 0, so is not needed.

13 a Using the discriminant $b^2 - 4ac = 0$ for equal roots: $(2\sqrt{2})^2 - 4(1)(k) = 0$ 8 - 4k = 0k = 2

b
$$y = x^2 + 2\sqrt{2x} + 2$$

= $(x + \sqrt{2})^2$
When $y = 0$, $(x + \sqrt{2})^2 = 0$,
so $x = -\sqrt{2}$
When $x = 0$, $y = 2$

14 a $g(x) = x^9 - 7x^6 - 8x^3$ $= x^3(x^6 - 7x^3 - 8)$ To factorise $x^6 - 7x^3 - 8$, let $y = x^3$ $y^2 - 7y - 8 = (y + 1)(y - 8)$ So $g(x) = x^3(x^3 + 1)(x^3 - 8)$ a = 1, b = -8

Solution Bank

14 b
$$g(x) = x^3(x^3 + 1)(x^3 - 8) = 0$$

 $x^3 = 0, x^3 = -1 \text{ or } x^3 = 8$
 $x = 0, x = -1 \text{ or } x = 2$

15 a
$$x^{2} + 10x + 36$$

 $x^{2} + 10x = 9 (x+5)^{2} - 25$
Complete the square for $x^{2} + 10x + 363$
 $x^{2} + 10x + 36 = (x-5)^{2} - 25 + 36$
 $= (x+5)^{2} + 11$
 $a = 5$ and $b = 11$

b $x^2 + 10x + 36 = 0$ $(x+5)^2 + 11 = 0$ 'Hence' implied in part **a** must be used $(x+5)^2 = -11$ A real number squared cannot be

negative. There are no real roots.

- c $x^{2} + 10x + k = 0$ a = 1, b = 10, c = kFor equal roots, $b^{2} = 4ac$ $10^{2} = 4 \times 1 \times k$ 4k = 100k = 25
- d a = 1, thus a > 0, so the graph of $x^{2} + 10x + 25$ is a \bigvee shape. x = 0: y = 0 + 0 + 25 = 25Meets y-axis at (0, 25). y = 0: $x^{2} + 10x + 25 = 0$ (x + 5)(x + 5) = 0 x = -5Meets x-axis at (-5, 0).

The graph meets the *x*-axis at just one point, so it 'touches' the *x*-axis.

16 a
$$x^{2} + 2x + 3$$

 $x^{2} + 2x = (x+1)^{2} - 1$
Complete the square for $x^{2} + 2x + 3$
 $x^{2} + 2x + 3 = (x+1)^{2} - 1 + 3$
 $= (x+1)^{2} + 2$
 $a = 1$ and $b = 2$

b a = 1, thus a > 0, so the graph of $y = x^2 + 2x + 3$ is a \bigvee shape. x = 0 : y = 0 + 0 + 3Put x = 0 to find the intersection with the *y*-axis: Meets *y*-axis at (0, 3).

Put y = 0 to find the intersection with the x-axis: $y = 0: x^2 + 2x + 3 = 0$ $(x + 1)^2 + 2 = 0$ $(x + 1)^2 = -2$

A real number squared cannot be negative, therefore, no real roots, so no intersection with the *x*-axis.

c
$$x^{2} + 2x + 3$$

 $a = 1, b = 2, c = 3$
 $b^{2} - 4ac = 2^{2} - 4 \times 1 \times 3$
 $= -8$

Since the discriminant is negative, the equation has no real roots, so the graph does not cross the *x*-axis.

Solution Bank

16 d $x^2 + kx + 3 = 0$ a = 1, b = k, c = 3For no real roots, $b^2 < 4ac$ $k^2 < 12$ $k^2 - 12 < 0$ $(k + \sqrt{12})(k - \sqrt{12}) < 0$ This is a quadratic inequality with critical values $-\sqrt{12}$ and $\sqrt{12}$.

Critical values:

$$k = -\sqrt{12}, k = \sqrt{12}$$

 $-\sqrt{12} < k < \sqrt{12}$

The surds can be simplified using $\sqrt{(ab)} = \sqrt{a}\sqrt{b}$ $\sqrt{12} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ $\left(-2\sqrt{3} < k < 2\sqrt{3}\right)$

17 a
$$2x^2 - x(x-4) = 8$$

 $2x^2 - x^2 + 4x = 8$
 $x^2 + 4x - 8 = 0$

17 b $x^{2} + 4x - 8 = 0$ $x^{2} + 4x = (x+2)^{2} - 4$ $(x+2)^{2} - 4 - 8 = 0$ $(x+2)^{2} = 12$ $x+2 = \pm \sqrt{12}$ $\sqrt{12} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ $x = -2 \pm 2\sqrt{3}$ a = -2 and b = 2Using y = x - 4: $y = (-2 \pm 2\sqrt{3}) - 4$ $= -6 \pm 2\sqrt{3}$ Solution: $x = -2 \pm 2\sqrt{3}$ $y = -6 \pm 2\sqrt{3}$

P Pearson

18 a
$$3(2x + 1) > 5 - 2x$$

 $6x + 3 > 5 - 2x$
 $6x + 2x + 3 > 5$
 $8x > 2$
 $x > \frac{1}{4}$

b
$$2x^2 - 7x + 3 = 0$$

 $(2x - 1)(x - 3) = 0$
 $(2x - 1) = 0$ or $(x - 3) = 0$
 $x = \frac{1}{2}$ or $x = 3$

 $2x^2 - 7x + 3 > 0$ where $x < \frac{1}{2}$ or x > 3

Solution Bank

Pearson

20 a
$$y=5-2x$$

 $2x^2-3x-(5-2x)=16$
 $2x^2-3x-5+2x=16$
 $2x^2-x-21=0$
 $(2x-7)(x+3)=0$
 $x=3\frac{1}{2}, x=-3$
 $x=3\frac{1}{2}: y=5-7=-2$
 $x=-3: y=5+6=11$

Solution $x = 3\frac{1}{2}, y = -2$ and x = -3, y = 11 20 b The equations in part a could be written as y = 5 - 2x and $y = 2x^2 - 3x - 16$. Therefore, the solutions to $2x^2 - 3x - 16 = 5 - 2x$ are the same as for part a. These are the critical values for $2x^2 - 3x - 16 > 5 - 2x$: $x = 3\frac{1}{2}$ and x = -3. $2x^2 - 3x - 16 > 5 - 2x$ $(2x^2 - 3x - 16 > 5 - 2x + 2x - 3x - 16 - 5 + 2x > 0)$ $2x^2 - x - 21 > 0$

 $x < -3 \text{ or } x > 3\frac{1}{2}$

- 21 a $x^{2} + kx + (k+3) = 0$ a = 1, b = k, c = k+3 $b^{2} > 4ac$ $k^{2} > 4(k+3)$ $k^{2} > 4k + 12$ $k^{2} - 4k - 12 > 0$
 - **b** $k^2 4k 12 = 0$ (k+2)(k-6) = 0k = -2, k = 6

 $k^2 - 4k - 12 > 0$ where k < -2 or k > 6

Solution Bank

Pearson

 $22 \qquad \frac{6}{x+5} < 2$

Multiply both sides by $(x + 5)^2$ $6(x + 5) < 2(x + 5)^2$ $6x + 30 < 2x^2 + 20x + 50$ $2x^2 + 14x + 20 > 0$

Solve the quadratic to find the critical values. $2x^{2} + 14x + 20 = 0$ $2(x^{2} + 7x + 10) = 0$ 2(x + 5)(x + 2) = 0x = -5 or x = -2

The solution is x < -5 or x > -2.

23 a $9-x^2 = 0$ (3+x)(3-x) = 0 x = -3 or x = 3When x = 0, y = 9

> To work out the points of intersection, solve the equations simultaneously. $9 - x^2 = 14 - 6x$ $x^2 - 6x + 5 = 0$ (x - 5)(x - 1) = 0x = 1 or x = 5

When x = 1, y = 8When x = 5, y = -16

Let
$$14 - 6x = 0$$

 $x = \frac{14}{6} = \frac{7}{3}$

The line crosses the x-axis at $\left(\frac{7}{3}, 0\right)$.

24 a
$$x^3 - 4x = x(x^2 - 4)$$

= $x(x+2)(x-2)$

b Curve crosses the x-axis where y = 0 x(x+2)(x-2) = 0 x = 0, x = -2, x = 2When x = 0, y = 0When $x \to \infty, y \to \infty$ When $x \to -\infty, y \to -\infty$

Crosses the y-axis at (0, 0). Crosses the x-axis at (-2, 0), (2, 0).

c $y = x^3 - 4x$ $y = (x-1)^3 - 4(x-1)$ This is a translation of +1 in the x-direction.

Solution Bank

26 b

Crosses the *x*-axis at (-1, 0), (1, 0) and (3, 0).

Crosses the *x*-axis at (2, 0) and (4, 0). Image of *P* is (3, 2).

Crosses the *x*-axis at (1, 0) and (2, 0). Image of *P* is $(1\frac{1}{2}, -2)$.

Meets the *y*-axis at (0, 0). Crosses the *x*-axis at (3, 0).

Crosses the *y*-axis at (0, 6). Meets the *x*-axis at (1, 0) and crosses the *x*-axis at (4, 0).

y30 2 8 x

Crosses the *y*-axis at (0, 3). Meets the *x*-axis at (2, 0) and crosses the *x*-axis at (8, 0).

с

y = 3 is an asymptote. x = 0 is an asymptote.

b The graph does not cross the *y*-axis (see sketch in part **a**). Crosses the *x*-axis where y = 0: $\frac{1}{x} + 3 = 0$

$$\frac{1}{x} + 3 = 0$$
$$\frac{1}{x} = -3$$
$$x = -\frac{1}{3}, \left(-\frac{1}{3}, 0\right)$$

INTERNATIONAL A LEVEL

Pure Mathematics 1

Solution Bank

P Pearson

- **28 a** y = -f(x) is a reflection in the *x*-axis of y = f(x), so *P* is transformed to (6, 8).
 - **b** y = f(x 3) is a translation 3 units to the right of y = f(x), so *P* is transformed to (9, -8).
 - c 2y = f(x) is $y = \frac{1}{2}f(x)$ which is a vertical stretch scale factor $\frac{1}{2}$ of y = f(x), so *P* is transformed to (6, -4).
- **29 a** $y = -\frac{a}{x}$ is the curve $y = \frac{k}{x}$, k < 0 $y = (x - b)^2$ is a translation, b units to the right of the curve $y = x^2$ When x = 0, $y = b^2$ When y = 0, x = b

b The graphs have 1 point of intersection.

30 b When $y = \frac{1}{(x+k)^2} - 4$ passes through the origin, x = 0 and y = 0.

So
$$\frac{1}{k^2} - 4 = 0$$

 $\frac{1}{k^2} = 4$
 $k = \pm \frac{1}{2}$

Solution Bank

P Pearson

Challenge

1 a
$$x^2 - 10x + 9 = 0$$

(x - 1)(x - 9) = 0
x = 1 or x = 9

- **b** $3^{x-2}(3^x 10) = -1$ $3^{2x-2} - 10 \times 3^{x-2} + 1 = 0$ Multiply by 3^2 : $3^{2x} - 10 \times 3^x + 9 = 0$ Let $y = 3^x$ $y^2 - 10y + 9 = 0$ Using your answers from part **a** y = 1 or 9 $3^x = 1$ or $3^x = 9$ x = 0 or x = 2
- 2 Let x and y be the length and width of the rectangle respectively. Area = xy = 6Perimeter = $2x + 2y = 8\sqrt{2}$ $2y = 8\sqrt{2} - 2x$ $y = 4\sqrt{2} - x$ Solving simultaneously: $x(4\sqrt{2} - x) = 6$ $x^2 - 4\sqrt{2}x + 6 = 0$

Using the quadratic formula:

$$x = \frac{4\sqrt{2} \pm \sqrt{(4\sqrt{2})^2 - 4(1)(6)}}{2(1)}$$
$$= \frac{4\sqrt{2} \pm \sqrt{8}}{2}$$
$$= \frac{4\sqrt{2} \pm 2\sqrt{2}}{2}$$
$$x = \sqrt{2} \text{ or } x = 3\sqrt{2}$$

When $x = \sqrt{2}$, $y = 3\sqrt{2}$ When $x = 3\sqrt{2}$, $y = \sqrt{2}$

The dimensions of the rectangle are $\sqrt{2}$ cm and $3\sqrt{2}$ cm.

3 Solving simultaneously $3x^3 + x^2 - x = 2x(x - 1)(x + 1)$ $3x^3 + x^2 - x = 2x(x^2 - 1)$ $3x^3 + x^2 - x = 2x^3 - 2x$ $x^3 + x^2 + x = 0$ $x(x^2 + x + 1) = 0$

> The discriminant of $x^2 + x + 1$ $b^2 - 4ac = 1^2 - 4(1)(1) = -3$. -3 < 0, so there are no real solutions for $x^2 + x + 1$.

The only solution is (0, 0).