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Practice exam paper
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 b ( ) ( ) ( )3 332 23 32 6 2 6a b a b= ×  

        
6

6

8 6
48
a b

a b
= ×

=
 

 

 c 1 7 3 7 3 7 3 7 7
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− + + − −
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     4 2 7
2

− −
=  

     2 7= − −  
 
2 3 1 0y x+ + =   (1) 
 2 211 3 0y x x+ + =   (2) 
 Rearrange equation (1) to get 
 3 1y x= − −     (3) 
 Substitute equation (3) into equation (2) to 

get 
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 1 1 or 
4 5

x x= − = −  

 Now substitute these values into equation (3) 
to find y. 

 When 1
4

x = − , 1
4

y = −  

 When 1
5

x = − , 2
5

y = −  
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 Since the point (9, 5) lies on f(x) 
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 Therefore 
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  So A = 1
5

, B = −2, p = 3
2

 and q = 1
2

−  
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4 c 
2 10
5

xy
x

−
=  

  
3 1
2 21 d 2  d

5
y x x x x

− 
= − 

 
∫ ∫  

         5 1
2 22 4

25
x x c= − +

 

 
5 a y = 2f(x) is a vertical stretch of scale  
  factor 2. 

   
 
 b y = f(x) − 9 translates all points 9 units 

down. 

   

5 c y = f(x + 2) translates all points 2 units to  
  the left. 

   
 d y = f(2x) is a horizontal compression of 

scale factor 2. 

   
 

6 
3

2 3 62 9
4
xy x x

x
−

= + +   

    
1 5 1

2 3 2 21 32 9
4 2

x x x x
−

= + + −  

 
2 3 3
3 2 2d 5 34 3

d 8 4
y x x x x
x

− −
= + + +  

 
7 a ( )2 4 0x kx k+ + + =   

 Since the equation has distinct real roots 
2 4 0b ac− >   

  ( )( )2 4 1 4 0k k− + >  
  2 4 16 0k k− − >  as required 
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7 b 2 4 16 0k k− − >  

  

( )22 20 0

2 20

2 2 5

k

k

k

− − >

− > ±

> ±

 

  Now sketch the graph of 2 4 16 0k k− − >  
 

   
 

 2 4 16 0k k− − >  when 2 2 5k < −  and 
2 2 5k > +  

 
8 2 3x py− = −    (1) 
 3 2 4x y q− + = −   (2) 
 The solution to the equations are x = 1 and  
 y = q. 
 Substituting these values into equations (1) 

and (2) gives 
 1 2 3pq− = −   (3) 
 3 4q− = −    (4) 
 Rearranging equation (4) gives 
 q = 7 
 Substituting q = 7 into equation (3) gives 
 1 14 3p− = −  

 
14 4

2
7

p

p

=

=
 

9 a 

   
 b The curve crosses the y-axis at x = 0, so 

  

πcos 0
4

2
2

y  = − 
 

=

 

  Therefore, the curve crosses the y-axis at 

 at 20,
2

 
  
 

. 

 
  The curve crosses the x-axis at y = 0, so 

  

πcos 0
4

π π
4 2
π π 3π
2 4 4

x

x

x

 − = 
 

− =

= + =

 

  Therefore, the curve crosses the x-axis at 

 at 3π ,0
4

 
 
 

. 

 The curve crosses the x-axis again after 

another π at 7π ,0
4

 
 
 

. 
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10 The line has gradient 3 and passes through 
the point (2, 1). 

 Substitute into ( )1 1y y m x x− = −  to get 

 ( )1 3 2y x− = −  
      3 5y x= −  
 This meets the line 2 3 6 0x y− + =  at the 

point P. 
 Substituting 3 5y x= −  into 2 3 6 0x y− + =  

gives 

 

( )2 3 3 5 6 0
2 9 15 6 0

7 21 0
3

x x
x x

x
x

− − + =

− + + =
− + =

=

 

 When x = 3,  
 y = 3(3) – 5 
    = 4 
 So P is the point (3, 4). 

 

 


