Solution Bank

- **a** Using area of $\triangle ABC = \frac{1}{2}ac \sin B$ $\sin \theta = \frac{34}{24} = \frac{2}{12}$
 $\Rightarrow \theta = 24.6^\circ \text{ or } 155^\circ (3 \text{ s.f.})$ $\rightarrow \theta = 24.6$ or 133 (3 s.f.)
As θ is obtuse, $\angle ABC = 155^{\circ}$ (3 s.f.) So $10 = 24 \sin \theta$
 $\sin \theta = \frac{10}{24} = \frac{5}{12}$ Using area of $\triangle AB$
10 = $\frac{1}{2} \times 6 \times 8 \times \sin \theta$ $10 = \frac{1}{2} \times 6 \times 8 \times \text{Si}$
So $10 = 24 \sin \theta$
- **b** Using the cosine rule: $b^2 = a^2 + c^2 - 2ac \cos B$ $AC^2 = 8^2 + 6^2 - 2 \times 8 \times 6 \times \cos B$ $=187.26$ $AC = 13.68$ The third side has length 13.7 m (3 s.f.).

Using the cosine rule $\cos x = \frac{3^2 + 1.2^2 - 2.4^2}{2.2 \times 1.2^2}$ $x = \frac{3^2 + 1.2^2 - 2.4}{2 \times 3 \times 1.2}$ \times 3 \times

$$
= 0.65
$$

x = cos⁻¹ (0.65)
= 49.458...
x = 49.5° (3 s.f.)

Using the area of a triangle formula: area $=$ $\frac{1}{2} \times 1.2 \times 3 \times \sin x$

$$
= 1.37 \text{ cm}^2 (3 \text{ s.f.})
$$

2 b

Using the sine rule:

$$
\frac{\sin x}{5} = \frac{\sin 80^{\circ}}{6}
$$

\n
$$
\sin x = \frac{5 \sin 80^{\circ}}{6}
$$

\n= 0.8206...
\n
$$
x = 55.2^{\circ} \text{ (3 s.f.)}
$$

The angle between the 5 cm and 6 cm sides is $180^\circ - (80 + x)^\circ = (100 - x)^\circ$.

Using the area of a triangle formula: $\text{Area} = \frac{1}{2} \times 5 \times 6 \times \sin(100 - x)$ $= 10.6$ cm² (3 s.f.)

Use the sine rule to find the angle opposite the 3 cm side. Call this *y*.

$$
\frac{\sin y}{3} = \frac{\sin 40^{\circ}}{5}
$$

\n
$$
\sin y = \frac{3 \sin 40^{\circ}}{5}
$$

\n
$$
\Rightarrow y = 22.68...^{\circ}
$$

\nSo $x = 180 - (40 + y)$
\n
$$
= 117 (3 s.f.)
$$

\nArea of triangle = $\frac{1}{2} \times 3 \times 5 \times \sin x$
\n
$$
= 66.6 \text{ cm}^{2} (3 s.f.)
$$

Solution Bank

 4_b

 $\overline{\mathbf{3}}$

Use the cosine rule to find angle A.
\n
$$
\cos A = \frac{3^2 + 5^2 - 7^2}{2 \times 3 \times 5}
$$
\n
$$
= -0.5
$$
\n
$$
A = \cos^{-1}(-0.5)
$$
\n
$$
= 120^{\circ}
$$
\nArea of triangle = $\frac{1}{2} \times 3 \times 5 \times \sin A$
\n
$$
= 6.495... = 6.50 \text{ cm}^2 (3 \text{ s.f.})
$$

 $4a$

$$
\frac{\sin \angle ADB}{3.9} = \frac{\sin 75^{\circ}}{4.8}
$$
\n
$$
\sin \angle ADB = \frac{3.9 \sin 75^{\circ}}{4.8}
$$
\n
$$
\angle ADB = \sin^{-1} \left(\frac{3.9 \sin 75^{\circ}}{4.8} \right)
$$
\n
$$
= 51.7035...
$$
\nSo $\angle ABD = 180^{\circ} - (75 + \angle ADB)^{\circ}$
\n
$$
= 53.296...
$$
\nArea of $\triangle ABD = \frac{1}{2} \times 3.9 \times 4.8 \times \sin \angle ABD$
\n
$$
= 7.504...
$$
\nIn $\triangle BDC$, $\angle BDC = 180^{\circ} - \angle ADB$
\n
$$
= 128.29...
$$
\nArea of $\triangle BDC = \frac{1}{2} \times 2.4 \times 4.8 \times \sin \angle BDC$
\n
$$
= 4.520...
$$
\nTotal area = area $\triangle ABD$ + area $\triangle BDC$
\n
$$
= 12.0 \text{ cm}^2 (3 \text{ s.f.})
$$

5

a Using the cosine rule: $b^2 = a^2 + c^2 - 2ac \cos B$ $(5\sqrt{13})^2 = (a\sqrt{3})^2 + 10^2$ $-2 \times a\sqrt{3} \times 10 \times \cos 150^\circ$ $325 = 3a^2 + 100 + 30a$ $3a^2 + 30a - 225 = 0$ $a^2 + 10a - 75 = 0$ $(a+15)(a-5)=0$ \Rightarrow a = 5 as a > 0

 \overline{c}

Solution Bank

5 **b** Area
$$
\triangle ABC = \frac{1}{2} \times 10 \times 5\sqrt{3} \times \sin 150^{\circ}
$$

= $12.5\sqrt{3}$ cm²

Using the area formula: $1 = \frac{1}{2} \times 2 \times \sqrt{2} \times \sin \theta$ $\sin \theta = \frac{1}{\sqrt{2}}$ 2 $\Rightarrow \theta = 45^{\circ}$ or 135° \Rightarrow sin $\theta =$ -

But as θ is not the largest angle, θ must be 45°.

Use the cosine rule to find x.
\n
$$
x^2 = 2^2 + (\sqrt{2})^2 - 2 \times 2 \times \sqrt{2} \times \cos 45^\circ
$$
\n
$$
x^2 = 4 + 2 - 4 = 2
$$
\nSo $x = \sqrt{2}$

The triangle is isosceles with two angles of 45°. It is a right-angled isosceles triangle.

a Use Pythagoras' theorem.

$$
AC = \sqrt{(1-0)^2 + (3-1)^2}
$$

= $\sqrt{5}$
= b

$$
BC = \sqrt{(3-1)^2 + (4-3)^2}
$$

= $\sqrt{5}$
= a

7 **a**
$$
AB = \sqrt{(3-0)^2 + (4-1)^2}
$$

= $\sqrt{18}$
= c

Using the cosine rule: $^{2} + h^{2} - c^{2}$ cos 2 $5 + 5 - 18$ $2 \times \sqrt{5} \times \sqrt{5}$ 8 10 $C = \frac{a^2 + b^2 - c}{2}$ *ab* $=\frac{a^2+b^2-c^2}{2}$ $+$ $=\frac{-}{1}$ $\times\sqrt{5}\times\sqrt{2}$ $=\frac{5+5-}{\sqrt{2}}$

4

 $=\frac{-}{4}$

5 Find sin *C* by using the identity $\cos^2 x + \sin^2 x = 1$ or by drawing a 3,4,5 triangle and looking at the ratio of the sides.

b Using the area formula:
\n
$$
\text{area of } \triangle ABC = \frac{1}{2}ab\sin C
$$
\n
$$
= \frac{1}{2} \times \sqrt{5} \times \sqrt{5} \times \sin C
$$
\n
$$
= 1.5 \text{ cm}^2
$$

8

a Using the cosine rule
\n
$$
(2x-1)^2 = (x+1)^2 + (x-1)^2
$$
\n
$$
-2(x+1)(x-1)\cos 120^\circ
$$
\n
$$
4x^2 - 4x + 1 = (x^2 + 2x + 1)
$$
\n
$$
+ (x^2 - 2x + 1) + (x^2 - 1)
$$
\n
$$
4x^2 - 4x + 1 = 3x^2 + 1
$$
\n
$$
x^2 - 4x = 0
$$
\n
$$
x(x-4) = 0
$$
\n
$$
\Rightarrow x = 4 \quad x > 1
$$

b Area of
$$
\Delta = \frac{1}{2} \times (x+1) \times (x-1) \times \sin 120^{\circ}
$$

= $\frac{1}{2} \times 5 \times 3 \times \sin 120^{\circ}$
= $\frac{1}{2} \times 5 \times 3 \times \frac{\sqrt{3}}{2}$

Solution Bank

8 b Area of $\Delta = \frac{15\sqrt{3}}{15}$ 4 $=$ $= 6.50 \text{ cm}^2 (3 \text{ s.f.})$ **9 a** $b^2 = a^2 + c^2 - 2ac \cos B$ $= a^{2} + c^{2} - 2ac \cos B$
= 1.4² + 1.2² - 2 × 1.4 × 1.2 × cos 70° $= 1.4 + 1.2 - 2 \times 1.4 \times 1.2 \times$
 $= 1.96 + 1.44 - 1.14918768$ So $b = 1.500027...$ Point *C* is 1.50 km from the park keeper's hut. **b** $\frac{\sin A}{\sin A} = \frac{\sin B}{A}$

$$
\frac{a}{1.4} = \frac{\sin 70^{\circ}}{1.5}
$$
\n
$$
\sin A = \frac{1.4 \sin 70^{\circ}}{1.5}
$$
\nSo $A = 61.288 10^{\circ}$
\nBearing = 360° - (180° - 61.288 10°)
\n= 241.29°
\nThe bearing of the hut from point C is 241°.

c Area of
$$
\Delta = \frac{1}{2}ac\sin B
$$

= $\frac{1}{2} \times 1.4 \times 1.2 \times \sin 70^{\circ}$
= 0.789 34...
= 0.789 km² (3 s.f.)

11

Using triangle *ABD*, the angles are 15°,

$$
148^{\circ} \text{ and } 17^{\circ}.
$$
\n
$$
\frac{b}{\sin B} = \frac{d}{\sin D}
$$
\n
$$
\frac{b}{\sin 148^{\circ}} = \frac{75}{\sin 17^{\circ}}
$$
\n
$$
b = \frac{75 \sin 148^{\circ}}{\sin 17^{\circ}} = 135.936...
$$
\nUsing the larger right-angled triangle:
\n
$$
\sin 15^{\circ} = \frac{\text{height}}{135.936}
$$
\n
$$
\text{height} = 135.936 \sin 15^{\circ}
$$
\n
$$
= 35.1829...
$$
\nThe tower's height is 35.2 m (3 s.f.).

- **12 a** A stretch of scale factor 2 in the *x* direction.
	- **b** A translation of $+3$ in the *y* direction.
	- **c** A reflection in the *x*-axis.
	- **d** A translation of 20 in the negative *x* direction (i.e. 20 to the left).

b $\tan (x - 45^\circ) + 2\cos x = 0$ $\tan (x - 45^\circ) = -2\cos x$ The graphs do not intersect so there are no solutions.

INTERNATIONAL A LEVEL

Pure Mathematics 1

Solution Bank

- **14 a** As it is the graph of $y = \sin x$ translated, the gap between *A* and *B* is 180°, so $p = 300^{\circ}$.
	- **b** The difference in the *x*-coordinates of *D* and *A* is 90°, so the *x*-coordinate of *D* is 30°. The maximum value of *y* is 1, so *D* is the point $(30^{\circ}, 1)$.
	- **c** For the graph of $y = \sin x$, the first positive intersection with the *x*-axis would occur at 180°. The point *A* is at 120° and so the curve has been translated by 60° to the left.

 $k = 60^{\circ}$

d The equation of the curve is $y = \sin (x + 60)$ °.

 $y = \sin (x + 60)$ °.
When $x = 0$, $y = \sin 60$ ° $= \frac{\sqrt{3}}{2}$, so $q = \frac{\sqrt{3}}{2}$. $\frac{13}{2}$, so $q = \frac{\sqrt{2}}{2}$ $x = 0$, $y = \sin 60^\circ = \frac{\sqrt{3}}{2}$, so $q = \frac{\sqrt{3}}{2}$.

15 a The graph of $y = \sin x$ crosses the *x*-axis at $(180^{\circ}, 0)$.

 $f(x) = \sin px$ is a stretch horizontally with scale factor $\frac{36}{180} = \frac{1}{5}$.

$$
f(x) = \sin 5x
$$

$$
p = 5
$$

- **b** The period of $f(x)$ is $360 \div 5 = 72^{\circ}$.
- **16 a**

b The four shaded regions are congruent therefore the magnitude of the *y* value is the same for sin *α.* $\sin \alpha$ ° and $\sin (108 - \alpha)$ ° have the same

y value (call it *k*).

- **16 b** So sin $\alpha^\circ = \sin(180 \alpha)^\circ$, $\sin(180 + \alpha)^\circ$ and $\sin(360 - \alpha)$ ° have the same *y* value, which will be –*k*.
	- So $\sin \alpha^\circ = \sin(180 \alpha)^\circ$ $=-\sin(180 + \alpha)$ ° $=-\sin(360 - \alpha)^{\circ}$

b i From the graph of $y = \cos \theta$, which shows four congruent shaded regions, if the *y* value at α is *k*, then *y* at $(180 - \alpha)^{\circ}$ is $-k$, *y* at $(180 + \alpha)$ ° is $-k$ and *y* at $(360 - \alpha)^{\circ}$ is +*k*.

So
$$
\cos \alpha^\circ = -\cos (180^\circ - \alpha)
$$

= $-\cos (180^\circ + \alpha)$
= $\cos (360^\circ - \alpha)$

ii From the graph of $y = \tan \theta$, if the *y* value at α is k, then at $(180 - \alpha)^\circ$ it is is $-k$, at $(180^\circ + \alpha)$ it is $+k$ and at $(360^{\circ} - \alpha)$ it is $-k$.

So
$$
\tan \alpha^\circ = -\tan (180^\circ - \alpha)
$$

= $+\tan (180^\circ + \alpha)$
= $-\tan (360^\circ - \alpha)$

18 a

b There are 4 complete waves in the interval $0^{\circ} \le x \le 24^{\circ}$ so there are 4 sand dunes in this model.

Solution Bank

18 c The sand dunes may not all be the same height.

Challenge

Substituting
$$
\sin \theta = \frac{1}{\sqrt{5}}
$$
:
\n
$$
\sin (180^\circ - \theta - \phi) = \frac{5\left(\frac{1}{\sqrt{5}}\right)}{\sqrt{10}}
$$
\n
$$
= \frac{5}{\sqrt{50}}
$$
\n
$$
= \frac{5}{5\sqrt{2}}
$$
\n
$$
= \frac{1}{\sqrt{2}}
$$
\n
$$
\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^\circ, \text{ but angle } 180^\circ - \theta - \phi \text{ is}
$$
\nobtuse.
\nSo, $180^\circ - \theta - \phi = 180^\circ - 45^\circ = 135^\circ$
\nTherefore, $\theta + \phi = 45^\circ$
\nSo, $\angle AEB + \angle ADB = \angle ACB$