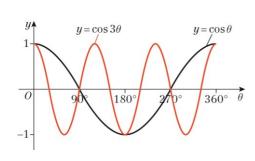
Pure Mathematics 1

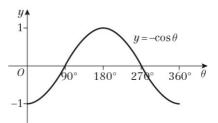
Exercise 6G

- 1 a i Maximum value of $\cos x$ is 1. This occurs when $x = 0^{\circ}$.
 - ii Minimum value is -1, which occurs when $x = 180^{\circ}$.
 - **b** i Maximum value of $\sin x$ is 1, so the maximum value of $4 \sin x$ is 4. This occurs when $x = 90^{\circ}$.
 - ii Minimum value of $4 \sin x$ is = -4. This occurs when $x = 270^{\circ}$.
 - **c** The graph of $\cos(-x)$ is a reflection of the graph of $\cos x$ in the y-axis. This is the same curve; $\cos(-x) = \cos x$.
 - i Maximum value of cos(-x) is 1. This occurs when $x = 0^{\circ}$.
 - ii Minimum value of $\cos(-x)$ is -1. This occurs when $x = 180^{\circ}$.
 - **d** The graph of $3 + \sin x$ is the graph of $\sin x$ translated by +3 vertically.
 - i Maximum is 4 when $x = 90^{\circ}$.
 - ii Minimum is 2 when $x = 270^{\circ}$.
 - e The graph of $-\sin x$ is the reflection of the graph of $\sin x$ in the x-axis.
 - i Maximum is 1 when $x = 270^{\circ}$.
 - ii Minimum is -1 when $x = 90^{\circ}$.
 - f The graph of $\sin 3x$ is the graph of $\sin x$ stretched by $\frac{1}{3}$ in the x direction.
 - i Maximum is 1 when $x = 30^{\circ}$.
 - ii Minimum is -1 when $x = 90^{\circ}$.

2



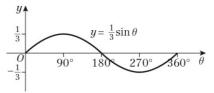
3 a The graph of $y = -\cos \theta$ is the graph of $y = \cos \theta$ reflected in the θ -axis.



The graph:

meets the θ -axis at $(90^{\circ}, 0)$, $(270^{\circ}, 0)$ meets the y-axis at $(0^{\circ}, -1)$ has a maximum at $(180^{\circ}, 1)$ has minima at $(0^{\circ}, -1)$ and $(360^{\circ}, -1)$.

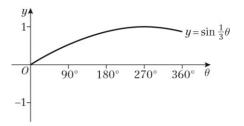
b The graph of $y = \frac{1}{3}\sin\theta$ is the graph of $y = \sin\theta$ stretched by scale factor $\frac{1}{3}$ in the y direction.



The graph:

meets the θ -axis at $(0^{\circ}, 0)$, $(180^{\circ}, 0)$, $(360^{\circ}, 0)$ meets the y-axis at $(0^{\circ}, 0)$ has a maximum at $(90^{\circ}, \frac{1}{3})$ has a minimum at $(270^{\circ}, -\frac{1}{3})$.

c The graph of $y = \sin \frac{1}{3}\theta$ is the graph of $y = \sin \theta$ stretched by scale factor 3 in the θ direction.

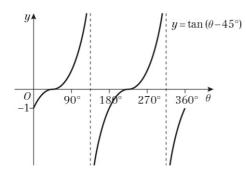


The graph: only meets the axes at the origin, has a maximum at (270°, 1).

1

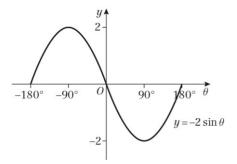
Solution Bank

3 d The graph of $y = \tan(\theta - 45^\circ)$ is the graph of $\tan \theta$ translated by 45° to the right.



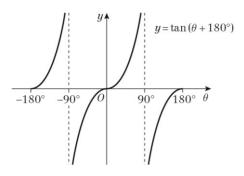
The graph: meets the θ -axis at (45°, 0), (225°, 0) meets the y-axis at $(0^{\circ}, -1)$ has asymptotes at $\theta = 135^{\circ}$ and $\theta = 315^{\circ}$.

4 a This is the graph of $y = \sin \theta$ stretched by scale factor –2 in the y-direction (i.e. reflected in the θ -axis and scaled by 2 in the y-direction).



The graph: meets the θ -axis at $(-180^{\circ}, 0)$, $(0^{\circ}, 0)$, $(180^{\circ}, 0)$ has a maximum at $(-90^{\circ}, 2)$ has a minimum at $(90^{\circ}, -2)$.

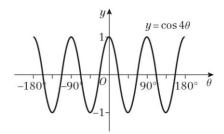
b This is the graph of $y = \tan \theta$ translated by 180° to the left.



As $\tan \theta$ has a period of 180°, $\tan(\theta + 180)^{\circ} = \tan\theta$

4 b The graph meets the θ -axis at $(-180^{\circ}, 0)$, $(0^{\circ}, 0), (180^{\circ}, 0)$

c This is the graph of $y = \cos \theta$ stretched by scale factor $\frac{1}{4}$ horizontally.



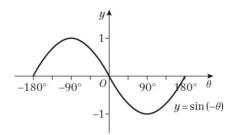
The graph:

meets the
$$\theta$$
-axis at $\left(-157\frac{1}{2}^{\circ}, 0\right)$, $\left(-112\frac{1}{2}^{\circ}, 0\right)$, $\left(-67\frac{1}{2}^{\circ}, 0\right)$, $\left(-22\frac{1}{2}^{\circ}, 0\right)$, $\left(22\frac{1}{2}^{\circ}, 0\right)$, $\left(67\frac{1}{2}^{\circ}, 0\right)$, $\left(112\frac{1}{2}^{\circ}, 0\right)$, $\left(157\frac{1}{2}^{\circ}, 0\right)$

meets the y-axis at $(0^{\circ}, 1)$ has maxima at $(-180^{\circ}, 1), (-90^{\circ}, 1),$ $(0^{\circ}, 1), (90^{\circ}, 1), (180^{\circ}, 1)$ has minima at $(-135^{\circ}, -1), (-45^{\circ}, -1),$ $(45^{\circ}, -1), (135^{\circ}, -1).$

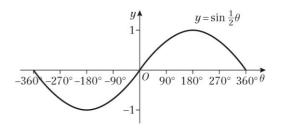
d This is the graph of $y = \sin \theta$ reflected in the *y*-axis.

(This is the same as $y = -\sin \theta$.)

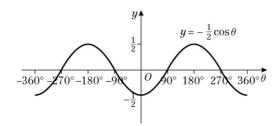


The graph: meets the θ -axis at $(-180^{\circ}, 0)$, $(0^{\circ}, 0)$, $(180^{\circ}, 0)$ has a maximum at $(-90^{\circ}, 1)$ has a minimum at $(90^{\circ}, -1)$.

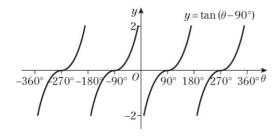
5 a Period = 720°



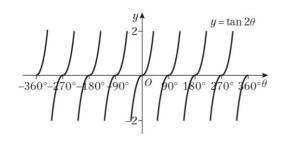
5 b Period = 360°



c Period = 180°

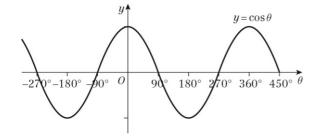


d Period = 90°

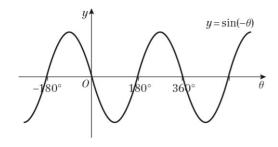


6 a i $y = \cos(-\theta)$ is a reflection of

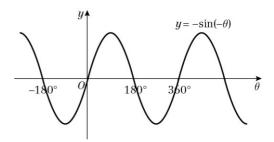
 $y = \cos \theta$ in the y-axis, which is the same curve, so $\cos \theta = \cos(-\theta)$.



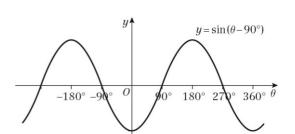
ii $y = \sin(-\theta)$ is a reflection of $y = \sin \theta$ in the y-axis.



6 **a** ii $y = -\sin(-\theta)$ is a reflection of $y = \sin(-\theta)$ in the θ -axis, which is the graph of $y = \sin \theta$, so $-\sin(-\theta) = \sin \theta$.



iii $y = \sin(\theta - 90^\circ)$ is the graph of $y = \sin \theta$ translated by 90° to the right, which is the graph of $y = -\cos \theta$. So $\sin(\theta - 90^\circ) = -\cos \theta$.



b Using **a ii** $\sin(90^{\circ} - \theta) = -\sin(-(90^{\circ} - \theta))$ $= -\sin(\theta - 90^{\circ})$ Using **a iii**

Using **a iii** $-\sin(\theta - 90^{\circ}) = -(-\cos \theta)$ $= \cos \theta$ So $\sin(90^{\circ} - \theta) = \cos \theta$.

- c Using a i $\cos(90^{\circ} - \theta) = \cos(\theta - 90^{\circ})$ $= \sin \theta$ $\cos(90^{\circ} - \theta) = \sin \theta.$
- 7 **a** The curve crosses the *x*-axis at $-270^{\circ} 30^{\circ}$, $-90^{\circ} 30^{\circ}$, $90^{\circ} 30^{\circ}$ and $270^{\circ} 30^{\circ}$; $\theta = -300^{\circ}$, -120° , 60° and 240° .

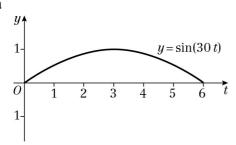
 Coordinates are $(-300^{\circ}, 0)$, $(-120^{\circ}, 0)$, $(60^{\circ}, 0)$ and $(240^{\circ}, 0)$
 - **b** $\cos 30^{\circ} = \frac{\sqrt{3}}{2}; \left(0, \frac{\sqrt{3}}{2}\right)$

8 a The graph is a translation left 60° of the sine graph.

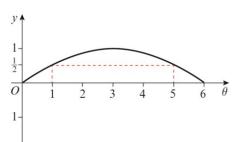
Therefore, $y = \sin(x + 60^\circ)$ $k = 60^\circ$

b Yes, the graph could be a translation right 300° , so $y = \sin(x - 300^{\circ})$

9 a



9 b



Between 1 p.m. and 5 p.m.