Solution Bank

P Pearson

Chapter review 5

1 a Gradient
$$m = -\frac{5}{12}$$
, $(x_1, y_1) = (2, 1)$
The equation of the line is:
 $y - y_1 = m(x - x_1)$
 $y - 1 = -\frac{5}{12}(x - 2)$
 $y - 1 = -\frac{5}{12}x + \frac{5}{6}$
 $y = -\frac{5}{12}x + \frac{11}{6}$

- **b** Substitute (k, 11) into $y = -\frac{5}{12}x + \frac{11}{6}$ $11 = -\frac{5}{12}k + \frac{11}{6}$ $11 - \frac{11}{6} = -\frac{5}{12}k$ $\frac{55}{6} = -\frac{5}{12}k$ Multiply each side by 12: 110 = 5kk = -22
- 2 a The gradient of *AB* is: $\frac{y_2 - y_1}{x_2 - x_1} = \frac{1}{3}$ So: $\frac{(2k-1)-1}{8-k} = \frac{1}{3}$ $\frac{2k-1-1}{8-k} = \frac{1}{3}$ $\frac{2k-2}{8-k} = \frac{1}{3}$ Multiply each side by (8-k): $2k-2 = \frac{1}{3}(8-k)$ Multiply each term by 3: 6k-6 = 8 - k 7k-6 = 8 7k = 14 k = 2
 - **b** k = 2.
 So A and B have coordinates (2, 1) and (8, 3).

- 2 **b** The equation of the line is: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $y - 1 \quad x - 2$
 - $\frac{y-1}{3-1} = \frac{x-2}{8-2}$ $\frac{y-1}{2} = \frac{x-2}{6}$ Multiply each side by 2: $y-1 = \frac{1}{3}(x-2)$ $y-1 = \frac{1}{3}x - \frac{2}{3}$ $y = \frac{1}{3}x + \frac{1}{3}$
- 3 a The equation of L_1 is: $y - y_1 = m(x - x_1)$ $y - 2 = \frac{1}{7}(x - 2)$ $y - 2 = \frac{1}{7}x - \frac{2}{7}$ $y = \frac{1}{7}x + \frac{12}{7}$ The equation of L_2 is: $y - y_1 = m(x - x_1)$ y - 8 = -1(x - 4) y - 8 = -x + 4 y = -x + 12
 - **b** Solve $y = \frac{1}{7}x + \frac{12}{7}$ and y = -x + 12simultaneously. $-x + 12 = \frac{1}{7}x + \frac{12}{7}$ $12 = \frac{8}{7}x + \frac{12}{7}$ $\frac{72}{7} = \frac{8}{7}x$ $x = \frac{\frac{72}{7}}{\frac{8}{7}}$ = 9 Substitute x = 9 into y = -x + 12: y = -9 + 12= 3 The lines intersect at C(9, 3).

Solution Bank

5

Pearson

- 4 a The equation of *l* is: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $\frac{y - 0}{6 - 0} = \frac{x - 1}{5 - 1}$ $\frac{y}{6} = \frac{x - 1}{4}$ Multiply each side by 6: $y = 6 \frac{(x - 1)}{4}$ $= \frac{3}{2}(x - 1)$ $= \frac{3}{2}x - \frac{3}{2}$
 - **b** Solve 2x + 3y = 15 and $y = \frac{3}{2}x \frac{3}{2}$ simultaneously. Substitute: $2x + 3(\frac{3}{2}x - \frac{3}{2}) = 15$ $2x + \frac{9}{2}x - \frac{9}{2} = 15$ $\frac{13}{2}x - \frac{9}{2} = 15$ $\frac{13}{2}x = \frac{39}{2}$ x = 3
 - Substitute x = 3 into $y = \frac{3}{2}x \frac{3}{2}$: $y = \frac{3}{2}(3) - \frac{3}{2}$ $= \frac{9}{2} - \frac{3}{2}$ = 3The coordinates of *C* are (3, 3).
- 5 $(x_1, y_1) = (1, 3), (x_2, y_2) = (-19, -19)$
 - The equation of L is:

$y-y_1$	$= \frac{x-x_1}{x-x_1}$
$y_2 - y_1$	$x_2 - x_1$
<i>y</i> -3	<u>x-1</u>
-19-3	-19 - 1
y-3	$\underline{x-1}$
-22	-20

Multiply each side by -22: $y-3 = \frac{-22}{-20}(x-1)$ $y-3 = \frac{11}{10}(x-1)$ Multiply each term by 10: 10y-30 = 11(x-1) 10y = 11x + 19 0 = 11x - 10y + 19The equation of *L* is 11x - 10y + 19 = 0.

- 6 **a** $(x_1, y_1) = (2, 2), (x_2, y_2) = (6, 0)$ The equation of l_1 is: $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $\frac{y - 2}{0 - 2} = \frac{x - 2}{6 - 2}$ $\frac{y - 2}{-2} = \frac{x - 2}{4}$ Multiply each side by -2: $y - 2 = -\frac{1}{2}(x - 2)$ (Note: $-\frac{2}{4} = -\frac{1}{2}$) $y - 2 = -\frac{1}{2}x + 1$ $y = -\frac{1}{2}x + 3$
 - **b** The equation of l_2 is: $y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{4}(x - (-9))$ $y = \frac{1}{4}(x + 9)$ $y = \frac{1}{4}x + \frac{9}{4}$
- 7 $A(1,3\sqrt{3}), B(2+\sqrt{3},3+4\sqrt{3})$
 - The gradient of the line through *A* and *B* is:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3 + 4\sqrt{3} - 3\sqrt{3}}{2 + \sqrt{3} - 1}$$
$$= \frac{3 + \sqrt{3}}{1 + \sqrt{3}}$$

Solution Bank

Pearson

- 7 Rationalising the denominator: $\frac{(3+\sqrt{3})\times(1-\sqrt{3})}{(1+\sqrt{3})\times(1-\sqrt{3})} = \frac{3-3\sqrt{3}+\sqrt{3}-3}{1-3}$ $=\frac{-2\sqrt{3}}{-2}$ $=\sqrt{3}$ The equation of the line is: $v = \sqrt{3}x + c$ Substituting x = 1 and $y = 3\sqrt{3}$ into $v = \sqrt{3}x + c$: $3\sqrt{3} = \sqrt{3} + c$ $c = 2\sqrt{3}$ The equation of line *l* is: $y = \sqrt{3}x + 2\sqrt{3}$ Line *l* meets the *x*-axis when y = 0. When y = 0, x = -2. C is the point (-2, 0).
- 8 a A(-4, 6), B(2, 8)The gradient of AB is: $\frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 6}{2 - (-4)}$ $= \frac{2}{6}$ $= \frac{1}{3}$ The gradient of a line performance of a line performa

The gradient of a line perpendicular to AB is:

$$-\frac{1}{\frac{1}{3}} = -3$$

The equation of p is:
$$y - y_1 = m(x - x_1)$$
$$y - 8 = -3(x - 2)$$
$$y - 8 = -3x + 6$$

y = -3x + 14

b Substitute x = 0 in the equation for *AB*: y = -3(0) + 14 = 14The coordinates of *C* are (0, 14). 9 a The line passes through A(0, 4) and is perpendicular to l: 2x - y - 1 = 0. 2x - y - 1 = 02x - 1 = yy = 2x - 1The gradient of 2x - y - 1 = 0 is 2. The gradient of a line perpendicular to 2x - y - 1 = 0 is $-\frac{1}{2}$. The equation of the line *m* is: $y - y_1 = m(x - x_1)$ $y - 4 = -\frac{1}{2}(x - 0)$ $y - 4 = -\frac{1}{2}x$ $y = -\frac{1}{2}x + 4$

Or, since *A* is a *y*-intercept, the equation can be written once the gradient is known i.e $y = -(\frac{1}{2})x + 4$.

- **b** To find *P*, solve $y = -\frac{1}{2}x + 4$ and 2x - y - 1 = 0 simultaneously. Substitute: $2x - (-\frac{1}{2}x + 4) - 1 = 0$ $2x + \frac{1}{2}x - 4 - 1 = 0$ $\frac{5}{2}x - 5 = 0$ 5x = 10 x = 2Substitute x = 2 into $y = -\frac{1}{2}x + 4$: $y = -\frac{1}{2}(2) + 4$ = -1 + 4 = 3The lines intersect at *P*(2, 3), as required.
- c A line parallel to the line *m* has gradient $-\frac{1}{2}$. The equation of the line *n* is: $y-y_1 = m(x-x_1)$ $y-0 = -\frac{1}{2}(x-3)$ $y = -\frac{1}{2}x + \frac{3}{2}$

Solution Bank

Pearson

9 c To find Q, solve
$$2x - y - 1 = 0$$
 and
 $y = -\frac{1}{2}x + \frac{3}{2}$ simultaneously.
Substitute:
 $2x - (-\frac{1}{2}x + \frac{3}{2}) - 1 = 0$
 $2x + \frac{1}{2}x - \frac{3}{2} - 1 = 0$
 $\frac{5}{2}x - \frac{5}{2} = 0$
 $\frac{5}{2}x = \frac{5}{2}$
 $x = 1$
Substitute $x = 1$ into $y = -\frac{1}{2}x + \frac{3}{2}$:
 $y = -\frac{1}{2}(1) + \frac{3}{2}$
 $= -\frac{1}{2} + \frac{3}{2}$
 $= 1$

The lines intersect at Q(1, 1).

10 A(0, -2) and B(6, 7)The gradient of the line through A and B is:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - (-2)}{6 - 0}$$
$$= \frac{9}{6}$$
$$= \frac{3}{2}$$

The equation of the line through *A* and *B* is: $y = \frac{3}{2}x + c$ Substituting x = 0 and y = -2 into $y = \frac{3}{2}x + c$: $-2 = \frac{3}{2}(0) + c$, so c = -2

As in Q9, the point A is the y-intercept so the equation can be written once the gradient has been calculated.

$$l_1: y = \frac{3}{2}x - 2$$

$$l_2: x + y = 8$$

To find point *D*, solve simultaneously
by substituting l_1 into l_2 .

$$x + \frac{3}{2}x - 2 = 8$$

$$\frac{5}{2}x = 10$$

$$x = 4$$

10 When x = 4, 4 + y = 8, y = 4∴ D is the point (4, 4).

The base of the triangle AC is 10 units. The height of the triangle is 4 units. Area $\triangle ACD$ is $\frac{1}{2} \times 10 \times 4 = 20$ units²

11 a A(2, 16) and B(12, -4)The equation of l_1 through A and B is:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$
$$\frac{y - 16}{-4 - 16} = \frac{x - 2}{12 - 2}$$
$$\frac{y - 16}{-20} = \frac{x - 2}{10}$$

Multiply each side by -20:

$$y-16 = -2(x-2)\left(\text{Note:}-\frac{20}{10} = -2\right)$$

 $y-16 = -2x+4$
 $y = -2x+20$
 $2x + y = 20$

b The equation of l_2 through C(-1, 1) with gradient $\frac{1}{3}$ is:

$$y - y_1 = m(x - x_1)$$

$$y - 1 = \frac{1}{3}(x - (-1))$$

$$y - 1 = \frac{1}{3}(x + 1)$$

$$y - 1 = \frac{1}{3}x + \frac{1}{3}$$

$$y = \frac{1}{3}x + \frac{4}{3}$$

Solution Bank

- 12 a A(-1, -2), B(7, 2) and C(k, 4)The gradient of *AB* is: $\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - (-2)}{7 - (-1)}$ $= \frac{4}{8}$ $= \frac{1}{2}$
 - **b** Since *ABC* is a right angle, the gradient of *BC* is:

$$\frac{-1}{\frac{1}{2}} = -2$$
So $\frac{y_2 - y_1}{x_2 - x_1} = -2$

$$\frac{4 - 2}{k - 7} = -2$$

$$\frac{2}{k - 7} = -2$$
Multiply each side by $(k - 7)$:
$$2 = -2(k - 7)$$

$$2 = -2k + 14$$

$$2k = 12$$

$$k = 6$$

c The equation of the line passing through *B* and *C* is:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$
$$\frac{y - 2}{4 - 2} = \frac{x - 7}{6 - 7}$$
$$\frac{y - 2}{2} = \frac{x - 7}{-1}$$

Multiply each side by 2:

$$y-2 = -2(x-7)$$
$$y-2 = -2x+14$$
$$y = -2x+16$$
$$2x + y = 16$$
$$2x + y - 16 = 0$$

d Remember angle *B* is a right angle.

Use the diagram or the distance formula to find lengths *AB* and *BC*.

$$AB = \sqrt{8^2 + 4^2}$$
$$= \sqrt{80}$$
$$BC = \sqrt{1^2 + 2^2}$$
$$= \sqrt{5}$$
Area of $\triangle ABC = \frac{1}{2} \times \sqrt{80} \times \sqrt{5}$
$$= \frac{1}{2} \times \sqrt{400}$$

$$= \frac{1}{2} \times \sqrt{400}$$
$$= \frac{1}{2} \times 20$$
$$= 10 \text{ units}^2$$

13 a The equation of the line through (-1, 5) and (4, -2) is:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$
$$\frac{y - 5}{-2 - 5} = \frac{x - (-1)}{4 - (-1)}$$
$$\frac{y - 5}{-7} = \frac{x + 1}{5}$$

Multiply each side by -35:

$$5(y-5) = -7(x+1)$$

$$5y-25 = -7x-7$$

$$7x + 5y - 25 = -7$$

$$7x + 5y - 18 = 0$$

Solution Bank

13 b For the coordinates of *A*, substitute y = 0: 7x + 5(0) - 18 = 07x - 18 = 07x = 18 $x = \frac{18}{7}$

> The coordinates of *A* are $\left(\frac{18}{7}, 0\right)$. For the coordinates of *B*, substitute x = 0: 7(0) + 5y - 18 = 0 5y - 18 = 0 5y = 18 $y = \frac{18}{5}$ The coordinates of *B* are $\left(0, \frac{18}{5}\right)$. The area of $\triangle OAB$ is: $\frac{1}{2} \times \frac{18}{7} \times \frac{18}{5} = \frac{162}{35}$

14 a Rearrange $l_1: 4y + x = 0$ into the form y = mx + c:4y = -x

 $y = -\frac{1}{4}x$

 l_1 has gradient $-\frac{1}{4}$ and it meets the coordinate axes at (0, 0). l_2 has gradient 2 and it meets the

y-ax1s at
$$(0, -3)$$
.

 l_2 meets the *x*-axis when y = 0.

Substitute y = 0 into the equation: 0 = 2x - 3 2x = 3 $x = \frac{3}{2}$ l_2 meets the x-axis at $(\frac{3}{2}, 0)$.

b Solve 4y + x = 0 and y = 2x - 3simultaneously. Substitute: 4(2x-3) + x = 08x-12 + x = 09x = 12 $x = \frac{4}{3}$ Now substitute $x = \frac{4}{3}$ into y = 2x - 3: $y = 2(\frac{4}{3}) - 3$ $= \frac{8}{3} - 3$ $= -\frac{1}{3}$ The coordinates of A are $(\frac{4}{3}, -\frac{1}{3})$.

c The gradient of l_1 is $-\frac{1}{4}$. The gradient of a line perpendicular to l_1 is $-\frac{1}{-\frac{1}{4}} = 4$.

The equation of this line is:

$$y - y_1 = m(x - x_1)$$

$$y - \left(-\frac{1}{3}\right) = 4\left(x - \frac{4}{3}\right)$$

$$y + \frac{1}{3} = 4x - \frac{16}{3}$$

$$y = 4x - \frac{17}{3}$$

Multiply each term by 3: 3y = 12x - 17 0 = 12x - 3y - 17The equation of the line is 12x - 3y - 17 = 0.

Solution Bank

15 a A(4, 6) and B(12, 2)The gradient of the line l_1 through Aand B is:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 6}{12 - 4}$$

$$= -\frac{4}{8}$$

$$= -\frac{1}{2}$$
The equation of l_1 is:

$$y = -\frac{1}{2}x + c$$
Substituting $x = 4$ and $y = 6$ into

$$y = -\frac{1}{2}x + c$$
:

$$6 = -\frac{1}{2}(4) + c$$

$$c = 8$$

$$y = -\frac{1}{2}x + c$$

$$x + 2y - 16 = 0$$

- **b** The gradient of the line l_2 is $-\frac{2}{3}$, the *y*-intercept is 0. $y = -\frac{2}{3}x$
- c Solve x + 2y 16 = 0 and $y = -\frac{2}{3}x$ simultaneously. $x + 2(-\frac{2}{3}x) - 16 = 0$ $x - \frac{4}{3}x - 16 = 0$ $-\frac{1}{3}x = 16$ x = -48When x = -48: $y = -\frac{2}{3}(-48)$ y = 32C is the point (-48, 32).
- **d** The gradient of *OA* is:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 0}{4 - 0}$$
$$= \frac{3}{2}$$

d The gradient of *OC* is: $\frac{y_2 - y_1}{x_2 - x_1} = \frac{32 - 0}{(-48) - 0} = -\frac{2}{3}$ $\frac{3}{2} \times -\frac{2}{3} = -1.$

Therefore the lines *OA* and *OC* are perpendicular.

e
$$OA = \sqrt{(4-0)^2 + (6-0)^2}$$

= $\sqrt{52}$
= $2\sqrt{13}$
= $\sqrt{((-48)-0)^2 + (32-0)^2}$
 $OC = \sqrt{3328}$
= $16\sqrt{13}$

- **f** Area of $\triangle OAB = \frac{1}{2} \times 16\sqrt{13} \times 2\sqrt{13}$ = 208 units²
- **16 a** (4*a*, *a*) and (-3*a*, 2*a*) The distance *d* between the points is: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{((-3a) - 4a)^2 + (2a - a)^2}$ $= \sqrt{49a^2 + a^2}$ $= \sqrt{50a^2}$ $= \sqrt{25 \times 2a^2}$ $= 5a\sqrt{2}$
 - **b** For points (4, 1) and (-3, 2), a = 1. Substitute a = 1 into $5a\sqrt{2}$. Distance $= 5\sqrt{2}$
 - **c** For points (12, 3) and (-9, 6), a = 3. Substitute a = 3 into $5a\sqrt{2}$. Distance $= 15\sqrt{2}$

Solution Bank

- **16 d** For points (-20, -5) and (15, -10), a = -5. Substitute a = -5 into $5a\sqrt{2}$. Distance $= -25\sqrt{2}$
- 17 a (x, y) is a point on y = 3x, so its coordinates are (x, 3x). The distance between A(-1, 5)and (x, 3x) is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(x - (-1))^2 + (3x - 5)^2}$
= $\sqrt{x^2 + 2x + 1 + 9x^2 - 30x + 25}$
= $\sqrt{10x^2 - 28x + 26}$

b
$$\sqrt{10x^2 - 28x + 26} = \sqrt{74}$$

 $10x^2 - 28x + 26 = 74$
 $10x^2 - 28x - 48 = 0$
 $5x^2 - 14x - 24 = 0$
 $(5x + 6)(x - 4) = 0$
 $x = -\frac{6}{5}$ or $x = 4$
When $x = -\frac{6}{5}$, $y = 3(-\frac{6}{5}) = -\frac{18}{5}$
When $x = 4$, $y = 3(4) = 12$
The points are $B(-\frac{6}{5}, -\frac{18}{5})$
and $C(4, 12)$.

c The gradient of the line y = 3x is 3, so the perpendicular line has gradient $-\frac{1}{3}$. Its equation is: $y = -\frac{1}{3}x + c$ When x = -1 and y = 5: $5 = -\frac{1}{3}(-1) + c$ $c = \frac{14}{3}$ $y = -\frac{1}{3}x + \frac{14}{3}$ d Solving $y = -\frac{1}{3}x + \frac{14}{3}$ and y = 3xsimultaneously: $3x = -\frac{1}{3}x + \frac{14}{3}$ 9x = -x + 14 10x = 14 $x = \frac{7}{5}$ When $x = \frac{7}{5}$, $y = 3(\frac{7}{5}) = \frac{21}{5}$ The point is $(\frac{7}{5}, \frac{21}{5})$

P Pearson

$$BC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(4 - (-\frac{6}{5}))^2 + (12 - (-\frac{18}{5}))^2}$
= $\sqrt{(\frac{26}{5})^2 + (\frac{78}{5})^2}$
= $\sqrt{\frac{6760}{25}}$

Distance from A(-1, 5) to $(\frac{7}{5}, \frac{21}{5})$ is: $\sqrt{(\frac{7}{5} - (-1))^2 + (\frac{21}{5} - 5)^2}$ $= \sqrt{(\frac{12}{5})^2 + (-\frac{4}{5})^2}$ $= \sqrt{\frac{160}{25}}$ Area of triangle is:

$$\frac{1}{2} \times \sqrt{\frac{6760}{25}} \times \sqrt{\frac{160}{25}} = \frac{520}{25}$$

= 20.8 units²

Solution Bank

Challenge

1 A(-2, -2), B(13, 8) and C(-4, 14)

```
The equation of AB is:
```

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y - (-2)}{8 - (-2)} = \frac{x - (-2)}{13 - (-2)}$$

$$\frac{y + 2}{10} = \frac{x + 2}{15}$$

$$3y + 6 = 2x + 4$$

$$3y = 2x - 2$$

$$y = \frac{2}{3}x - \frac{2}{3}$$

The gradient of $AB = \frac{2}{3}$.

The gradient of a line perpendicular to $AB = -\frac{3}{2}$.

The equation of the perpendicular to *AB* through *C*(-4, 14) is: $y - 14 = -\frac{3}{2}(x - (-4))$ $y - 14 = -\frac{3}{2}x - 6$ $y = -\frac{3}{2}x + 8$

Point *D* is where the line and the perpendicular intersect. Solve the equations $y = \frac{2}{3}x - \frac{2}{3}$ and $y = -\frac{3}{2}x + 8$ simultaneously. $\frac{2}{3}x - \frac{2}{3} = -\frac{3}{2}x + 8$ Multiply each term by 6. 4x - 4 = -9x + 48 13x = 52 x = 4Now substitute x = 4 into $y = -\frac{3}{2}x + 8$ $y = -\frac{3}{2}(4) + 8$ y = 2

D is the point (4, 2).

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(13 - (-2))^2 + (8 - (-2))^2}$
= $\sqrt{15^2 + 10^2}$
= $\sqrt{325}$
$$CD = \sqrt{(4 - (-4))^2 + (2 - 14)^2}$$

= $\sqrt{8^2 + (-12)^2}$
= $\sqrt{208}$
Area of $\triangle ABC = \frac{1}{2} \times \sqrt{325} \times \sqrt{208}$
= 130 units²

2 A(3, 8), B(9, 9) and C(5, 2)The gradient of AB is: $\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 8}{9 - 3}$ $= \frac{1}{6}$

*l*₁ is perpendicular to *AB*, so its gradient is -6. It passes through *C*, so its equation is: y = -6x + c2 = -6(5) + cc = 32

The equation of l_1 is y = -6x + 32. The gradient of *BC* is:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 9}{5 - 9} = \frac{7}{4}$$

Solution Bank

2 l_2 is perpendicular to *BC*, so its gradient is $-\frac{4}{7}$. It passes through *A*, so its equation is:

$$y = -\frac{4}{7}x + c$$

$$8 = -\frac{4}{7}(3) + c$$

$$c = \frac{68}{7}$$

The equation of l_2 is $y = -\frac{4}{7}x + \frac{68}{7}$.

The gradient of *AC* is:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 8}{5 - 3}$$
$$= -3$$

*l*₃ is perpendicular to *BC*, so its gradient is $\frac{1}{3}$. It passes through *B*, so its equation is: $y = \frac{1}{3}x + c$ $9 = \frac{1}{3}(9) + c$ c = 6The equation of *l*₃ is $y = \frac{1}{3}x + 6$.

Solve
$$l_1$$
 and l_2 simultaneously.
 $-6x + 32 = -\frac{4}{7}x + \frac{68}{7}$
 $-42x + 224 = -4x + 68$
 $38x = 156$
 $x = \frac{78}{19}$
 $y = -6(\frac{78}{19}) + 32 = \frac{140}{19}$

Their point of intersection is $\left(\frac{78}{19}, \frac{140}{19}\right)$.

Now solve l_2 and l_3 simultaneously. $-\frac{4}{7}x + \frac{68}{7} = \frac{1}{3}x + 6$ -12x + 204 = 7x + 126 19x = 78 $x = \frac{78}{19}$ $y = \frac{1}{3}(\frac{78}{19}) + 6 = \frac{140}{19}$ Their point of intersection is $(\frac{78}{19}, \frac{140}{19})$.

Therefore, l_1 , l_2 and l_3 all intersect at $(\frac{78}{19}, \frac{140}{19})$.

3
$$A(0, 0), B(a, b) \text{ and } C(c, 0)$$

The gradient of AB is:
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{b - 0}{a - 0}$$
$$= \frac{b}{a}$$

- l_1 is perpendicular to AB so its gradient is $-\frac{a}{b}$.
- **3** It passes through *C* so its equation is:

 $y = -\frac{a}{b}x + k$ where k is the y-intercept.

At C,
$$x = c$$
 and $y = 0$.

$$0 = -\frac{ac}{b} + k$$

$$k = \frac{ac}{b}$$

The equation of line l_1 is:

$$y = -\frac{a}{b}x + \frac{ac}{b}$$

The gradient of *BC* is:
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - b}{c - a}$$
$$= \frac{-b}{c - a}$$
*l*₂ is perpendicular to *BC* so its gradient is
$$\frac{c - a}{b}.$$

It passes through A, so its equation is:

$$y = \frac{c-a}{b}x + K$$
 where K is the y-intercept.

At A,
$$x = 0$$
, $y = 0$.

$$0 = \frac{c-a}{b}(0) + K$$

$$K = 0$$

The equation of line l_2 is $y = \frac{c-a}{b}x$.

Solution Bank

 l_3 is the vertical line through (a, b), so its equation is x = a.

Solve l_1 and l_3 simultaneously:

$$y = -\frac{a^2}{b} + \frac{ac}{b}$$
$$= \frac{a(c-a)}{b}$$

The intersection of l_1 and l_3 is the point

$$(a, \frac{a(c-a)}{b}).$$

Now solve l_2 and l_3 simultaneously.

$$y = \frac{a(c-a)}{b}$$

The intersection of l_2 and l_3 is the point

$$\left(a,\frac{a(c-a)}{b}\right).$$

Therefore, l_1 , l_2 and l_3 all intersect at

$$\left(a,\frac{a(c-a)}{b}\right).$$