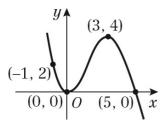
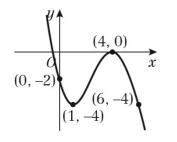
Solution Bank

Exercise 4F

1 **a** f(x+1) is a translation by $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$, **or** one unit to the left.



- *A*'(-1, 2), *B*'(0, 0), *C*'(3, 4), *D*'(5, 0)
- **b** f(x) 4 is a translation by $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$, or four units down.

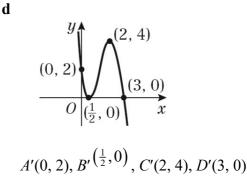


$$A'(0, -2), B'(1, -4), C'(4, 0), D'(6, -4)$$

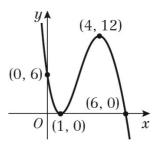
c f(x+4) is a translation by $\begin{pmatrix} -4\\ 0 \end{pmatrix}$, or or four units to the left.



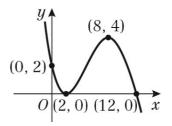
- A'(-4, 2), B'(-3, 0), C'(0, 4), D'(2, 0)
- **d** f(2x) is a stretch with scale factor $\frac{1}{2}$ in the *x*-direction.



e 3f(x) is a stretch with scale factor 3 in the *y*-direction.

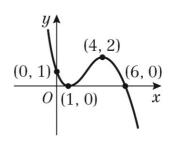


- A'(0, 6), B'(1, 0), C'(4, 12), D'(6, 0)
- **f** $f(\frac{1}{2}x)$ is a stretch with scale factor 2 in the *x*-direction.



A′(0, 2), *B*′(2, 0), *C*′(8, 4), *D*′(12, 0)

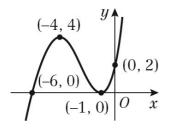
g $\frac{1}{2}$ f(x) is a stretch with scale factor $\frac{1}{2}$ in the y-direction.



A′(0, 1), *B*′(1, 0), *C*′(4, 2), *D*′(6, 0)

Solution Bank

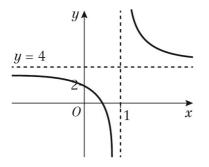
1 h f(-x) is a reflection in the y-axis.



$$A'(0, 2), B'(-1, 0), C'(-4, 4), D'(-6, 0)$$

2 a
$$f(x) + 2$$
 is a translation by $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$,

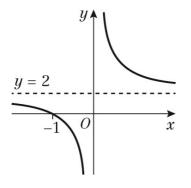
or two units up.



The curve crosses the *y*-axis at (0, 2) and the *x*-axis at (a, 0), where 0 < a < 1. The horizontal asymptote is y = 4. The vertical asymptote is x = 1.

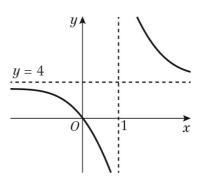
b f(x+1) is a translation by $\begin{pmatrix} -1\\ 0 \end{pmatrix}$

or one unit to the left.



The curve crosses the *x*-axis at (-1, 0). The horizontal asymptote is y = 2. The vertical asymptote is x = 0.

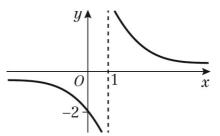
2 c 2f(x) is a stretch with scale factor 2 in the *y*-direction.



The curve crosses the axes at (0, 0). The horizontal asymptote is y = 4. The vertical asymptote is x = 1.

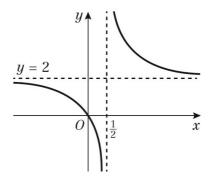
d f(x) - 2 is a translation by $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$,

or two units down.



The curve crosses the *y*-axis at (0, -2). The horizontal asymptote is y = 0. The vertical asymptote is x = 1.

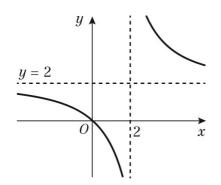
e f(2x) is a stretch with scale factor $\frac{1}{2}$ in the x-direction.



The curve crosses the axes at (0, 0). The horizontal asymptote is y = 2. The vertical asymptote is $x = \frac{1}{2}$.

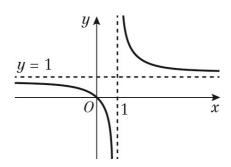
Solution Bank

2 f $f^{\left(\frac{1}{2}x\right)}$ is a stretch with scale factor 2 in the x-direction.



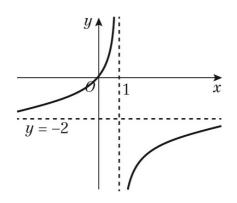
The curve crosses the axes at (0, 0). The horizontal asymptote is y = 2. The vertical asymptote is x = 2.

g $\frac{1}{2}$ f(x) is a stretch with scale factor $\frac{1}{2}$ in the *y*-direction.



The curve crosses the axes at (0, 0). The horizontal asymptote is y = 1. The vertical asymptote is x = 1.

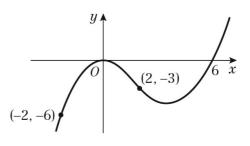
h -f(x) is a reflection in the *x*-axis.



The curve crosses the axes at (0, 0). The horizontal asymptote is y = -2. The vertical asymptote is x = 1.

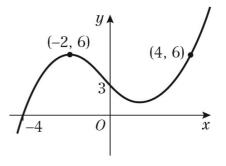
3 a f(x-2) is a translation by $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$,

or two units to the right.



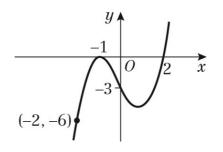
$$A'(-2, -6), B'(0, 0), C'(2, -3), D'(6, 0)$$

b f(x) + 6 is a translation by $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$, or six units up.



A'(-4, 0), B'(-2, 6), C'(0, 3), D'(4, 6)

c f(2x) is a stretch with scale factor $\frac{1}{2}$ in the x-direction.

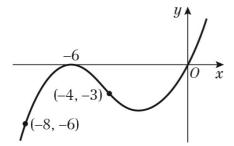


A'(-2, -6), B'(-1, 0), C'(0, -3), D'(2, 0)

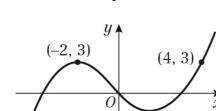
Solution Bank

3 d f(x + 4) is a translation by $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$

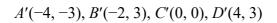
or four units to the left.



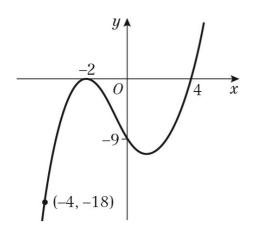
- $A'(-8,-6),B'(-6,0),\,C'(-4,-3),\,D'(0,0)$
- e f(x) + 3 is a translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$, or three units up.



(-4, -3)

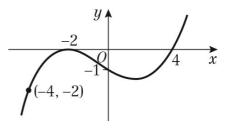


f 3f(x) is a stretch with scale factor 3 in the *y*-direction.



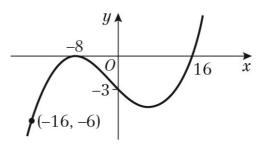
$$A'(-4, -18), B'(-2, 0), C'(0, -9), D'(4, 0)$$

g $\frac{1}{3}$ f(x) is a stretch with scale factor $\frac{1}{3}$ in the y-direction.



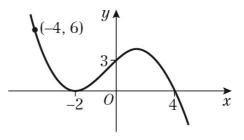
$$A'(-4, -2), B'(-2, 0), C'(0, -1), D'(4, 0)$$

h $f(\frac{1}{4}x)$ is a stretch with scale factor 4 in the *x*-direction.

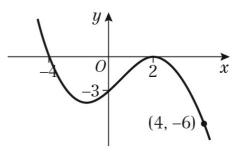


$$A'(-16, -6), B'(-8, 0), C'(0, -3), D'(16, 0)$$

i -f(x) is a reflection in the x-axis.



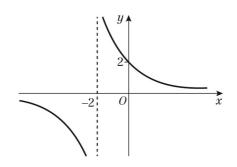
- A'(-4, 6), B'(-2, 0), C'(0, 3), D'(4, 0)
- **j** f(-x) is a reflection in the *y*-axis.



A′(4, -6), *B*′(2, 0), *C*′(0, -3), *D*′(-4, 0)

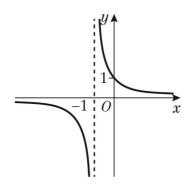
Solution Bank

4 a i 2f(x) is a stretch with scale factor 2 in the y-direction.



The curve crosses the *y*-axis at (0, 2). The horizontal asymptote is y = 0. The vertical asymptote is x = -2.

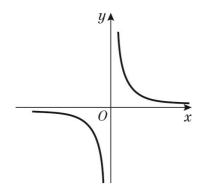
ii f(2x) is a stretch with scale factor $\frac{1}{2}$ in the x-direction.



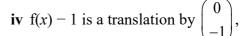
The curve crosses the *y*-axis at (0, 1). The horizontal asymptote is y = 0. The vertical asymptote is x = -1.

iii
$$f(x-2)$$
 is a translation by $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

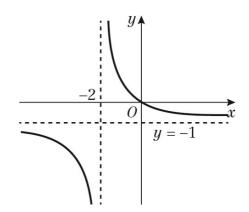
or two units to the right.



There are no intersections with the axes. The horizontal asymptote is y = 0. The vertical asymptote is x = 0.

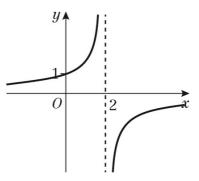


or one unit down.



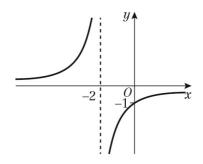
The curve crosses the axes at (0, 0). The horizontal asymptote is y = -1. The vertical asymptote is x = -2.

v f(-x) is a reflection in the *y*-axis.



The curve crosses the *y*-axis at (0, 1). The horizontal asymptote is y = 0. The vertical asymptote is x = 2.

vi -f(x) is a reflection in the *x*-axis.



The curve crosses the *y*-axis at (0, -1). The horizontal asymptote is y = 0. The vertical asymptote is x = -2.

Solution Bank

4 b The shape of the curve is like $y = \frac{k}{x}$, k > 0.

x = -2 asymptote suggests the denominator is zero when x = -2, so the denominator is x + 2. Also, f(0) = 1 means the numerator must be 2.

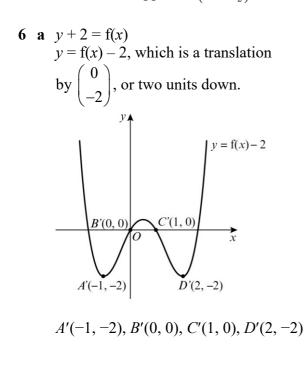
$$f(x) = \frac{2}{x+2}$$

5 a P(2, 1) is mapped to Q(4, 1). The *x*-coordinate has doubled, which is a stretch with scale factor 2 in the *x*-direction. $y = f(\frac{1}{2}x) \Rightarrow a = \frac{1}{2}$

b i
$$f(x-4)$$
 is a translation by $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$,

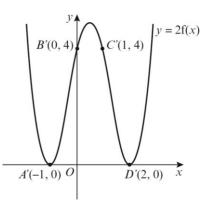
or four units to the right. So P is mapped to (6, 1).

- ii 3f(x) is a stretch with scale factor 3 in the *y*-direction.So *P* is mapped to (2, 3).
- iii $\frac{1}{2} f(x) 4$ is a stretch with scale factor $\frac{1}{2}$ in the *y*-direction and then a translation by $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$, or four units down. So *P* is mapped to $(2, -3\frac{1}{2})$



6 b $\frac{1}{2}y = f(x)$

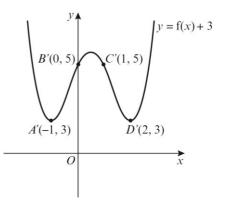
y = 2f(x), which is a stretch with scale factor 2 in the *y*-direction.



$$A'(-1, 0), B'(0, 4), C'(1, 4), D'(2, 0)$$

c
$$y-3 = f(x)$$

 $y = f(x) + 3$, which is a translation
 $by \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, or three units up.

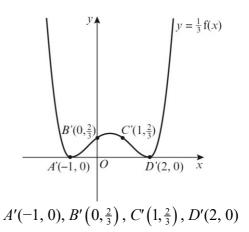


$$A'(-1, 3), B'(0, 5), C'(1, 5), D'(2, 3)$$

d 3y = f(x)

4

 $y = \frac{1}{3} f(x)$, which is a stretch with scale factor $\frac{1}{3}$ in the *y*-direction.

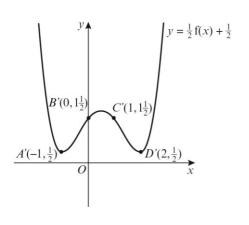


Solution Bank

6 e 2y - 1 = f(x)

 $y = \frac{1}{2}f(x) + \frac{1}{2}$, which is a stretch with scale

- factor $\frac{1}{2}$ in the *y*-direction, then a
- translation by $\begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$, or $\frac{1}{2}$ unit up.



 $A'\left(-1,\frac{1}{2}\right), B'\left(0,1\frac{1}{2}\right), C'\left(1,1\frac{1}{2}\right), D'\left(2,\frac{1}{2}\right)$