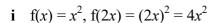
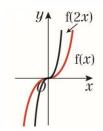
Exercise 4E

Pure Mathematics 1

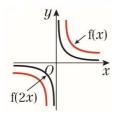
1 a f(2x) is a stretch with scale factor $\frac{1}{2}$ in the x-direction.



ii
$$f(x) = x^3$$
, $f(2x) = (2x)^3 = 8x^3$

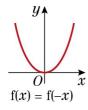


iii
$$f(x) = \frac{1}{x}$$
, $f(2x) = \frac{1}{2x}$

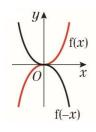


b f(-x) is a reflection in the y-axis (or stretch with scale factor -1 in the x-direction).

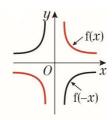
i
$$f(x) = x^2$$
, $f(-x) = (-x)^2 = x^2$



ii
$$f(x) = x^3$$
, $f(-x) = (-x)^3 = -x^3$

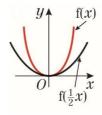


b iii
$$f(x) = \frac{1}{x}$$
, $f(-x) = \frac{1}{-x} = -\frac{1}{x}$

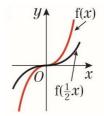


c $f(\frac{1}{2}x)$ is a stretch with scale factor 2 in the *x*-direction.

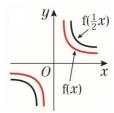
i
$$f(x) = x^2$$
, $f(\frac{1}{2}x) = (\frac{1}{2}x)^2 = \frac{x^2}{4}$



ii
$$f(x) = x^3$$
, $f(\frac{1}{2}x) = (\frac{1}{2}x)^3 = \frac{x^3}{8}$

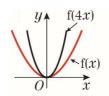


iii
$$f(x) = \frac{1}{x}$$
, $f(\frac{1}{2}x) = \frac{1}{\frac{1}{2}x} = \frac{2}{x}$

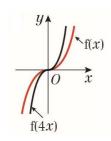


d f(4x) is a stretch with scale factor $\frac{1}{4}$ in the x-direction.

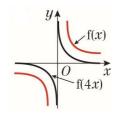
i
$$f(x) = x^2$$
, $f(4x) = (4x)^2 = 16x^2$



1 d ii $f(x) = x^3$, $f(4x) = (4x)^3 = 64x^3$

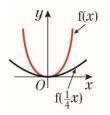


iii
$$f(x) = \frac{1}{x}$$
, $f(4x) = \frac{1}{4x}$

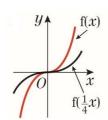


e $f(\frac{1}{4}x)$ is a stretch with scale factor 4 in the x-direction.

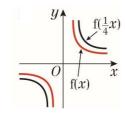
i
$$f(x) = x^2$$
, $f(\frac{1}{4}x) = (\frac{1}{4}x)^2 = \frac{x^2}{16}$



ii
$$f(x) = x^3$$
, $f(\frac{1}{4}x) = (\frac{1}{4}x)^3 = \frac{x^3}{64}$

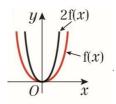


iii
$$f(x) = \frac{1}{4}, f(\frac{1}{4}x) = \frac{1}{\frac{1}{4}x} = \frac{4}{x}$$

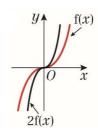


f 2f(x) is a stretch with scale factor 2 in the y-direction.

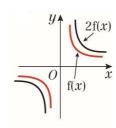
i
$$f(x) = x^2$$
, $2f(x) = 2x^2$



ii
$$f(x) = x^3$$
, $2f(x) = 2x^3$

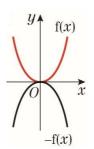


iii
$$f(x) = \frac{1}{x}$$
, $2f(x) = 2 \times \frac{1}{x} = \frac{2}{x}$



g -f(x) is a reflection in the x-axis (or stretch with scale factor -1 in the y-direction).

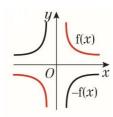
i
$$f(x) = x^2, -f(x) = -x^2$$



ii
$$f(x) = x^3, -f(x) = -x^3$$

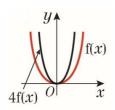
Solution Bank

1 g iii $f(x) = \frac{1}{x}, -f(x) = -\frac{1}{x}$

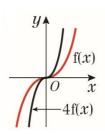


h 4f(x) is a stretch with scale factor 4 in the *y*-direction.

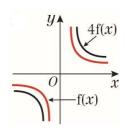
i
$$f(x) = x^2$$
, $4f(x) \rightarrow y = 4x^2$



ii
$$f(x) = x^3$$
, $4f(x) = 4x^3$

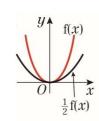


iii
$$f(x) = \frac{1}{x}$$
, $4f(x) = 4 \times \frac{1}{x} = \frac{4}{x}$

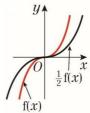


i i $\frac{1}{2}$ f(x) is a stretch with scale factor $\frac{1}{2}$ in the y-direction.

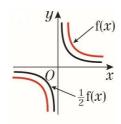
$$f(x) = x^2$$
, $\frac{1}{2} f(x) = \frac{1}{2} x^2$



i ii
$$f(x) = x^3$$
, $\frac{1}{2}f(x) = \frac{1}{2}x^3$

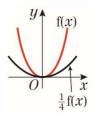


iii
$$f(x) = \frac{1}{x}, \frac{1}{2}f(x) = \frac{1}{2x}$$

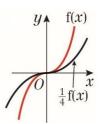


j i $\frac{1}{4}$ f(x) is a stretch with scale factor $\frac{1}{4}$ in the y-direction.

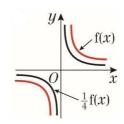
$$f(x) = x^2$$
, $\frac{1}{4} f(x) = \frac{1}{4} x^2$



ii
$$f(x) = x^3$$
, $\frac{1}{4} f(x) = \frac{1}{4} x^3$



iii
$$f(x) = \frac{1}{x}, \frac{1}{4}f(x) = \frac{1}{4x}$$



Solution Bank

2 **a** $y = x^2 - 4$ = (x - 2)(x + 2)

As a = 1 is positive, the graph has a \bigvee shape and a minimum point.

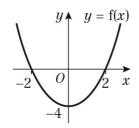
$$0 = (x-2)(x+2)$$

So
$$x = 2$$
 or $x = -2$

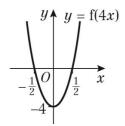
The curve crosses the *x*-axis at (2, 0) and (-2, 0).

When
$$x = 0$$
, $y = (-2) \times 2 = -4$

The curve crosses the y-axis at (0, -4).



b f(4x) is a stretch with scale factor $\frac{1}{4}$ in the x-direction.



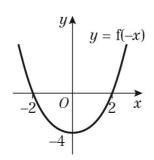
$$\frac{1}{3}y = f(x)$$

$$y = 3f(x)$$

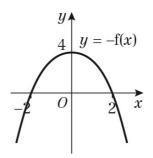
3f(x) is a stretch with scale factor 3 in the *y*-direction.



f(-x) is a reflection in the y-axis.



2 b -f(x) is a reflection in the x-axis.



3 **a**
$$y = (x-2)(x+2)x$$

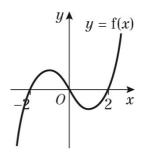
 $0 = (x-2)(x+2)x$

So
$$x = 2$$
, $x = -2$ or $x = 0$

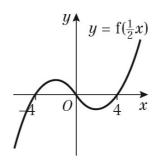
The curve crosses the x-axis at (2, 0), (-2, 0) and (0, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$

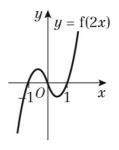


b $f(\frac{1}{2}x)$ is a stretch with scale factor 2 in the *x*-direction.



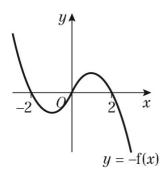
f(2x) is a stretch with scale factor $\frac{1}{2}$ in the *x*-direction.

4



Solution Bank

3 **b** -f(x) is a reflection in the x-axis.



4 **a**
$$y = x^2(x-3)$$

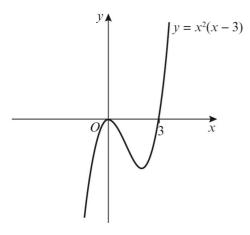
0 = $x^2(x-3)$

So
$$x = 0$$
 or $x = 3$

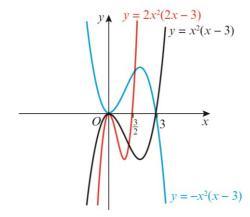
The curve touches the x-axis at (0, 0) and crosses it at (3, 0).

$$x \to \infty, y \to \infty$$

 $x \to -\infty, y \to -\infty$



- **b** i $f(x) = x^2(x-3)$, so $y = (2x)^2(2x-3)$ is f(2x), which is a stretch with scale factor $\frac{1}{2}$ in the x-direction.
 - ii $y = -x^2(x-3)$ is -f(x), which is a reflection in the x-axis.



5 **a**
$$y = x^2 + 3x - 4$$

= $(x + 4)(x - 1)$

As a = 1 is positive, the graph has a \bigvee shape and a minimum point.

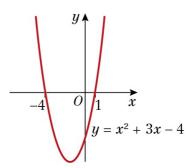
$$0 = (x+4)(x-1)$$

So
$$x = -4$$
 or $x = 1$

The curve crosses the *x*-axis at (-4, 0) and (1, 0).

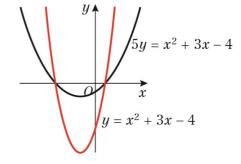
When
$$x = 0$$
, $y = 4 \times (-1) = -4$

The curve crosses the y-axis at (0, -4).



b
$$5y = x^2 + 3x - 4$$

 $y = \frac{1}{5} (x^2 + 3x - 4)$
 $f(x) = x^2 + 3x - 4$, so $y = \frac{1}{5} (x^2 + 3x - 4)$ is $\frac{1}{5} f(x)$, which is a stretch with scale factor $\frac{1}{5}$ in the *y*-direction.



Solution Bank

6 a y = f(2x) is a stretch with scale factor $\frac{1}{2}$ in the *x*-direction, so all *x*-coordinates are halved.

P(2, -3) is transformed to the point (1, -3).

b y = 4f(x) is a stretch with scale factor 4 in the *y*-direction, so all *y*-coordinates are multiplied by four.

P(2, -3) is transformed to the point (2, -12).

7 $f(\frac{1}{2}x)$ is a stretch with scale factor 2 in the *x*-direction, so all *x*-coordinates are doubled.

Q(-2, 8) is transformed to the point (-4, 8).

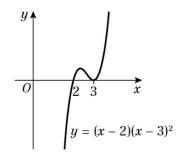
8 **a** $y = (x-2)(x-3)^2$ $0 = (x-2)(x-3)^2$ So x = 2 or x = 3

The curve crosses the x-axis at (2, 0) and touches it at (3, 0).

When
$$x = 0$$
, $y = (-2) \times (-3)^2 = -18$

$$x \to \infty, y \to \infty$$

 $x \to -\infty, y \to -\infty$



b $f(x) = (x-2)(x-3)^2$ $y = (ax-2)(ax-3)^2$ is the graph of y = f(ax), which is a stretch with scale factor $\frac{1}{a}$ in the *x*-direction, so all x-coordinates are multiplied by $\frac{1}{a}$. For the point (2, 0) to be transformed to (1, 0), multiply the *x*-coordinate by $\frac{1}{2}$, giving a = 2. For the point (3, 0) to be transformed to

(1, 0), multiply the x-coordinate by $\frac{1}{3}$,

giving a = 2 or a = 3

Challenge

- 1 $y = \frac{1}{3}$ f(2x) is a stretch with scale factor $\frac{1}{3}$ in the y-direction, so multiply the y-coordinate by $\frac{1}{3}$, and a stretch with scale factor $\frac{1}{2}$ in the x-direction, so multiply the x-coordinate by $\frac{1}{2}$. R(4, -6) is transformed to (2, -2).
- 2 S(-4, 7) is transformed to S'(-8, 1.75). The x-coordinate has doubled, which is a stretch of scale factor 2 in the x-direction. The y-coordinate has been divided by 4, which is a stretch of scale factor $\frac{1}{4}$ in the y-direction.

The transformation is $y = \frac{1}{4} f(\frac{1}{2}x)$.