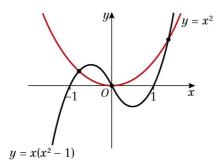
Solution Bank

Exercise 4C

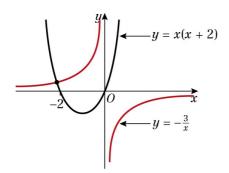
1 a i $y = x^2$ is standard. $y = x(x^2 - 1)$ = x(x - 1)(x + 1) 0 = x(x - 1)(x + 1)So x = 0, x = 1 or x = -1The curve crosses the x-axis at (0, 0), (1, 0) and (-1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$



ii Three points of intersection

iii Equation:
$$x^2 = x(x^2 - 1)$$

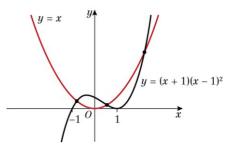
b i y = x(x+2)As a = 1 is positive, the graph has a \bigvee shape and a minimum point. 0 = x(x+2)So x = 0 or x = -2The curve crosses the *x*-axis at (0, 0) and (-2, 0). $y = -\frac{3}{x}$ is like $y = -\frac{1}{x}$ and so exists in the second and fourth quadrants.



ii One point of intersection

iii Equation:
$$x(x+2) = -\frac{3}{x}$$

c i $y = x^2$ is standard. $y = (x + 1)(x - 1)^2$ $0 = (x + 1)(x - 1)^2$ So x = -1 or x = 1The curve crosses the x-axis at (-1, 0) and touches it at (1, 0). $x \to \infty, y \to +\infty$ $x \to -\infty, y \to -\infty$



ii Three points of intersection

iii Equation: $x^2 = (x + 1)(x - 1)^2$

d i $y = x^2(1-x)$ $0 = x^2(1-x)$ So x = 0 or x = 1The curve crosses the x-axis at (1, 0) and touches it at (0, 0). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$ $y = -\frac{2}{x}$ is like $y = -\frac{1}{x}$ and so exists in the second and fourth quadrants.

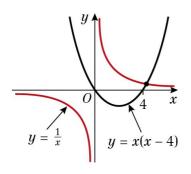
 $y = x^{2}(1-x)$ 0 $y = -\frac{2}{x}$

ii Two points of intersection

iii Equation:
$$x^2(1-x) = -\frac{2}{x}$$

Solution Bank

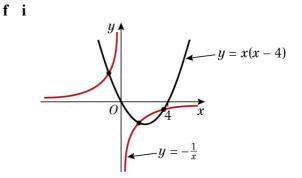
1 e i y = x(x - 4)As a = 1 is positive, the graph has a \bigvee shape and a minimum point. 0 = x(x - 4)So x = 0 or x = 4The curve crosses the x-axis at (0, 0) and (4, 0). $y = \frac{1}{x}$ is standard.



ii One point of intersection

iii Equation:
$$x(x-4) = \frac{1}{x}$$

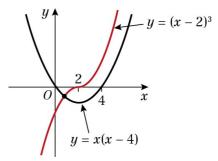
f i y = x(x-4)As a = 1 is positive, the graph has a \bigvee shape and a minimum point. 0 = x(x-4)So x = 0 or x = 4The curve crosses the x-axis at (0, 0) and (4, 0). $y = -\frac{1}{x}$ is standard and in the second and fourth quadrants. When x = 2, $y = -\frac{1}{x}$ gives $y = -\frac{1}{2}$ y = x(x-4) gives y = 2(-2) = -4So when x = 2, $x(x-4) < -\frac{1}{x}$ So $y = -\frac{1}{x}$ cuts y = x(x-4) in the fourth quadrant.



ii Three points of intersection

iii Equation: $x(x-4) = -\frac{1}{x}$

g i y = x(x - 4)As a = 1 is positive, the graph has a \bigvee shape and a minimum point. 0 = x(x - 4)So x = 0 or x = 4The curve crosses the x-axis at (0, 0)and (4, 0). $y = (x - 2)^3$ $0 = (x - 2)^3$ So x = 2 and the curve crosses the x-axis at (2, 0) only. $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

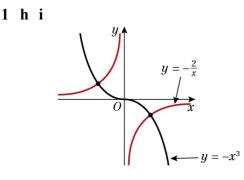


ii One point of intersection

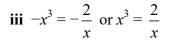
iii
$$x(x-4) = (x-2)^3$$

h i $y = -x^3$ is standard. $y = -\frac{2}{x}$ is like $y = -\frac{1}{x}$ and in the second and fourth quadrants.

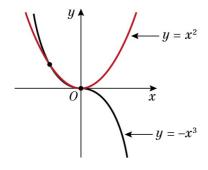
Solution Bank



ii Two points of intersection



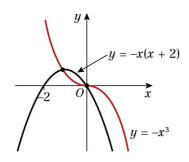
i i $y = -x^3$ is standard. $y = x^2$ is standard.



ii Two points of intersection.At (0, 0) the curves actually touch.They intersect in the second quadrant.

iii
$$-x^3 = x^2$$

j i $y = -x^3$ is standard. y = -x(x+2)As a = -1 is negative, the graph has a \bigwedge shape and a maximum point. 0 = -x(x+2)So x = 0 or x = -2The curve crosses the x-axis at (0, 0) and (-2, 0).



ii Three points of intersection

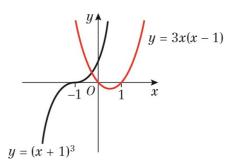
1 j iii
$$-x^3 = -x(x+2)$$
 or $x^3 = x(x+2)$

- 2 a $y = x^{2}(x-3)$ $0 = x^{2}(x-3)$ So x = 0 or x = 3The curve crosses the x-axis at (3, 0) and touches it at (0, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$ $y = \frac{2}{x}$ is like $y = \frac{1}{x}$.
 - **b** From the sketch, there are only two points of intersection of the curves. This means there are only two values of *x* where

$$\frac{2}{x^2(x-3) = \frac{2}{x}}$$

x³(x-3) = 2
So this equation has two real solutions.

3 a $y = (x + 1)^3$ $0 = (x + 1)^3$ So x = -1 and the curve crosses the x-axis at (-1, 0) only. $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$ y = 3x(x - 1)As a = 3 is positive, the graph has a \bigvee shape and a minimum point. 0 = 3x(x - 1)So x = 0 or x = 1The curve crosses the x-axis at (0, 0)and (1, 0).



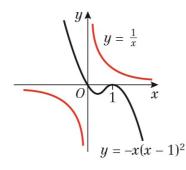
Solution Bank

3 b From the sketch, there is only one point of intersection of the curves. This means there is only one value of x where $(x + 1)^3 = 3x(x - 1)$

$$x^{3} + 3x^{2} + 3x + 1 = 3x^{2} - 1$$
$$x^{3} + 6x + 1 = 0$$

So this equation has one real solution.

4 **a**
$$y = \frac{1}{x}$$
 is standard.
 $y = -x(x-1)^2$
 $0 = -x(x-1)^2$
So $x = 0$ or $x = 1$
The curve crosses the x-axis at (0, 0)
and touches it at (1, 0).
 $x \to \infty, y \to -\infty$
 $x \to -\infty, y \to \infty$



b From the sketch, there are no points of intersection of the curves. This means there are no values of *x* where

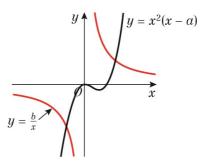
$$\frac{1}{x} = -x(x-1)^2$$

$$1 = -x^2(x-1)^2$$

$$1 + x^2(x-1)^2 = 0$$

So this equation has no real solutions.

5 a $y = x^{2}(x - a)$ $0 = x^{2}(x - a)$ So x = 0 or x = aThe curve crosses the x-axis at (a, 0)and touches it at (0, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$ $y = \frac{b}{x}$ is a $y = \frac{k}{x}$ graph, with k > 0. 5 a

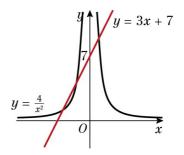


b From the sketch, there are two points of intersection of the curves. This means there are two values of *x* where

$$x^{2}(x-a) = \frac{b}{x}$$
$$x^{3}(x-a) = b$$
$$x^{4} - ax^{3} - b = 0$$

So this equation has two real solutions.

6 a
$$y = \frac{4}{x^2}$$
 is a $y = \frac{k}{x^2}$ graph, with $k > 0$.
 x^2 is always positive and $k > 0$ so the
y-values are all positive.
 $y = 3x + 7$
 $0 = 3x + 7$
So $x = -\frac{7}{3}$
 $y = 3x + 7$ is a straight line crossing the
x-axis at $\left(-\frac{7}{3}, 0\right)$.



b There are three points of intersection, so there are three real solutions to the equation

$$\frac{4}{x^2} = 3x + 7$$

c
$$(x+1)(x+2)(3x-2) = 0$$

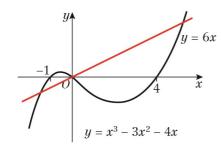
 $(x+1)(3x^2+4x-4) = 0$
 $3x^3+7x^2-4 = 0$
 $3x^3+7x^2 = 4$
 $x^2(3x+7) = 4$
 $3x+7 = \frac{4}{x^2}$

Solution Bank

8 a

6 d (x+1)(x+2)(3x-2) = 0So x = -1, x = -2 or $x = \frac{2}{3}$ Using y = 3x + 7: when x = -1, y = 3(-1) + 7 = 4when x = -2, y = 3(-2) + 7 = 1when $x = \frac{2}{3}$, $y = 3(\frac{2}{3}) + 7 = 9$ The points of intersection are (-1, 4), (-2, 1) and $(\frac{2}{3}, 9)$.

7 **a** $v = x^3 - 3x^2 - 4x$ $=x(x^2-3x-4)$ 0 = x(x-4)(x+1)So x = 0, x = 4 or x = -1The curve crosses the x-axis at (0, 0), (4, 0) and (-1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$ y = 6x is a straight line through (0, 0).

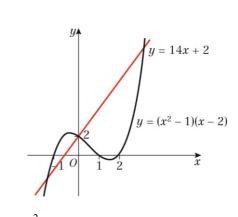


b
$$x^3 - 3x^2 - 4x = 6x$$

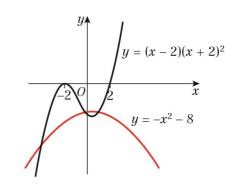
 $x^3 - 3x^2 - 10x = 0$
 $x(x^2 - 3x - 10) = 0$
 $x(x - 5)(x + 2) = 0$
So $x = 0, x = 5$ or $x = -2$
Using $y = 6x$:
when $x = 0, y = 0$
when $x = 5, y = 30$
when $x = -2, y = -12$
The points of intersection are (0, 0),
(5, 30) and (-2, -12).

8 a
$$y = (x^2 - 1)(x - 2)$$

 $= (x - 1)(x + 1)(x - 2)$
 $0 = (x - 1)(x + 1)(x - 2)$
So $x = 1, x = -1$ or $x = 2$
The curve crosses the x-axis at (1, 0),
(-1, 0) and (2, 0).
When $x = 0, y = (-1)^2 \times (-2) = 2$
 $x \to \infty, y \to \infty$
 $x \to -\infty, y \to -\infty$
 $y = 14x + 2$ is a straight line passing
through (0, 2) and $(-\frac{1}{7}, 0)$.



- **b** $(x^2-1)(x-2) = 14x+2$ $x^3-2x^2-x+2) = 14x+2$ $x^3 - 2x^2 - 15x = 0$ $x(x^2 - 2x - 15) = 0$ x(x-5)(x+3) = 0x = 0, x = 5 or x = -3Using y = 14x + 2: when x = 0, y = 2when x = 5, y = 14(5) + 2 = 72when x = -3, y = 14(-3) + 2 = -40The points of intersection are (0, 2), (5, 72) and (-3, -40).
- 9 a $y = (x-2)(x+2)^2$ $0 = (x-2)(x+2)^2$ So x = 2 or x = -2The curve crosses the x-axis at (2, 0)and touches it at (-2, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$ $y = -x^2 - 8$ As a = -1 is negative, the graph has a /shape and a maximum point at (0, -8).



b

 $(x+2)^{2}(x-2) = -x^{2} - 8$ $(x^{2} + 4x + 4)(x-2) = -x^{2} - 8$ $x^{3} + 4x^{2} + 4x - 2x^{2} - 8x - 8 = -x^{2} - 8$ $x^{3} + 3x^{2} - 4x = 0$ $x(x^2 + 3x - 4) = 0$ x(x-1)(x+4) = 0So x = 0, x = 1 or x = -4

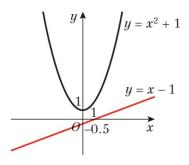
Solution Bank

9 b Using $y = -x^2 - 8$: when x = 0, $y = -0^2 - 8 = -8$ when x = 1, $y = -1^2 - 8 = -9$ when x = -4, $y = -(-4)^2 - 8 = -24$ The points of intersection are (0, -8), (1, -9) and (-4, -24).

10 a
$$y = x^2 + 1$$

As a = 1 is positive, the graph has a \bigvee shape and a minimum point at (0, 1). 2y = x - 1 $y = \frac{1}{2}x - \frac{1}{2}$ This is a straight line passing through

 $(0,-\frac{1}{2})$ and (1,0).



b The discriminant $b^2 - 4ac = (-1)^2 - 4(2)(3)$ = -23 < 0, so there are no real roots

c

 $x^{2} + a = \frac{1}{2}x - \frac{1}{2}$ $2x^{2} + 2a = x - 1$ $2x^{2} - x + 2a + 1 = 0$ Using the discriminant for two real roots, $b^{2} - 4ac > 0$ $(-1)^{2} - 4(2)(2a + 1) > 0$ 1 - 16a - 8 > 0 -16a - 7 > 0 16a < -7 $a < -\frac{7}{16}$