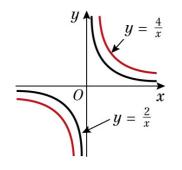
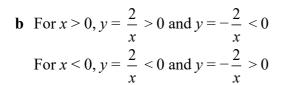
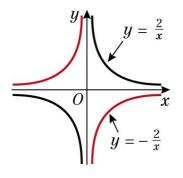
Pure Mathematics 1

Solution Bank

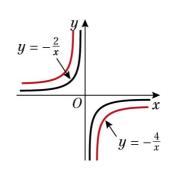

С

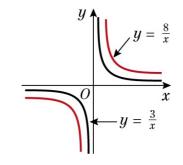



Exercise 4B

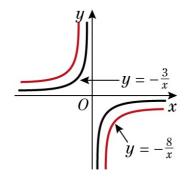
1 a For
$$x > 0$$
, $\frac{4}{x} > \frac{2}{x}$ (since $4 > 2$)
For $x < 0$, $\frac{4}{x} < \frac{2}{x}$
So $y = \frac{4}{x}$ is above $y = \frac{2}{x}$

in the first quadrant, and below in the third quadrant.



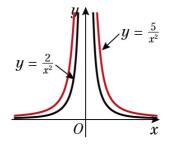


c Graphs are like $y = -\frac{1}{x}$ and so they exist in the second and fourth quadrants.


For x > 0, $-\frac{4}{x} < -\frac{2}{x}$ For x < 0, $-\frac{4}{x} > -\frac{2}{x}$ So $y = -\frac{4}{x}$ is above $y = -\frac{2}{x}$ in the second quadrant and below it in the fourth quadrant.

d For x > 0, $\frac{8}{x} > \frac{3}{x}$ So $y = \frac{8}{x}$ is above $y = \frac{3}{x}$ in the first quadrant and below it in the third quadrant.

e For x > 0, $-\frac{8}{x} < -\frac{3}{x}$ For x < 0, $-\frac{8}{x} > -\frac{3}{x}$ So $y = -\frac{8}{x}$ is above $y = -\frac{3}{x}$ in the second quadrant and below it in the fourth quadrant.

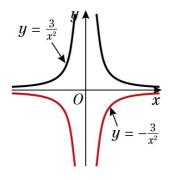

Pure Mathematics 1

Solution Bank

2 **a** $y = \frac{2}{x^2}$ and $y = \frac{5}{x^2}$ These are $y = \frac{k}{x^2}$ graphs, with k > 0. x^2 is always positive and k > 0 so the y-values are all positive.

$$\frac{5}{x^2} > \frac{2}{x^2} \text{ (since } 5 > 2\text{)}$$

So $y = \frac{5}{x^2}$ is above $y = \frac{2}{x^2}$.



b $y = \frac{3}{x^2}$ and $y = -\frac{3}{x^2}$ $y = \frac{3}{x^2}$ is a $y = \frac{k}{x^2}$ graph, with k > 0. x^2 is always positive and k > 0 so the

y-values are all positive.

 $y = -\frac{3}{x^2}$ is a $y = \frac{k}{x^2}$ graph, with k < 0.

 x^2 is always positive and k < 0 so the y-values are all negative.

c $y = -\frac{2}{x^2}$ and $y = -\frac{6}{x^2}$ These are $y = \frac{k}{x^2}$ graphs, with k < 0. x^2 is always positive and k < 0 so the y-values are all negative.

$$-\frac{6}{x^2} < -\frac{2}{x^2} \text{ (since } -6 < -2)$$

So $y = -\frac{6}{x^2}$ is below $y = -\frac{2}{x^2}$.

$$y = -\frac{2}{x^2}$$

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.