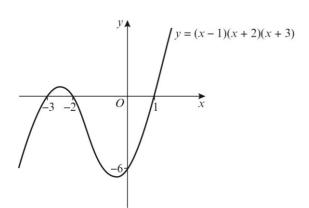
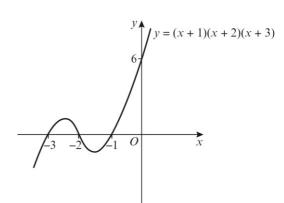
Solution Bank

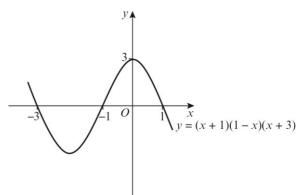
1)



Exercise 4A

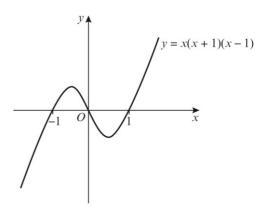

1 a y = (x - 3)(x - 2)(x + 1) 0 = (x - 3)(x - 2)(x + 1)So x = 3, x = 2 or x = -1The curve crosses the x-axis at (3, 0), (2, 0) and (-1, 0). When x = 0, $y = (-3) \times (-2) \times 1 = 6$ So the curve crosses the y-axis at (0, 6). $x \to \infty$, $y \to \infty$ $x \to -\infty$, $y \to -\infty$

$$y = (x-3)(x-2)(x +$$

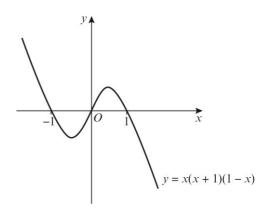

b y = (x - 1)(x + 2)(x + 3) 0 = (x - 1)(x + 2)(x + 3)So x = 1, x = -2 or x = -3The curve crosses the *x*-axis at (1, 0), (-2, 0) and (-3, 0). When $x = 0, y = (-1) \times 2 \times 3 = -6$ So the curve crosses the *y*-axis at (0, -6). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

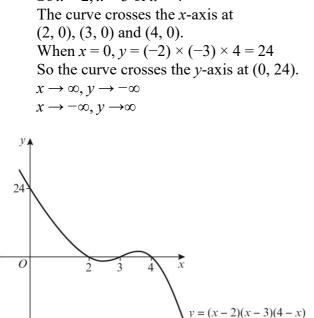
c y = (x + 1)(x + 2)(x + 3) 0 = (x + 1)(x + 2)(x + 3)So x = -1, x = -2 or x = -3The curve crosses the x-axis at (-1, 0), (-2, 0) and (-3, 0). When $x = 0, y = 1 \times 2 \times 3 = 6$ So the curve crosses the y-axis at (0, 6). $x \rightarrow \infty, y \rightarrow \infty$ $x \rightarrow -\infty, y \rightarrow -\infty$

d y = (x + 1)(1 - x)(x + 3) 0 = (x + 1)(1 - x)(x + 3)So x = -1, x = 1 or x = -3The curve crosses the x-axis at (-1, 0), (1, 0) and (-3, 0). When $x = 0, y = 1 \times 1 \times 3 = 3$ So the curve crosses the y-axis at (0, 3). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$

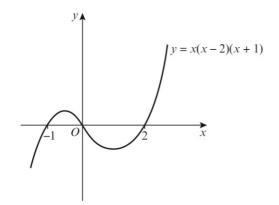

INTERNATIONAL A LEVEL

Pure Mathematics 1


Solution Bank

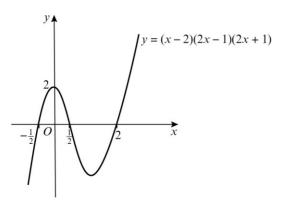


- 1 e y = (x-2)(x-3)(4-x)0 = (x - 2)(x - 3)(4 - x)So x = 2, x = 3 or x = 4The curve crosses the *x*-axis at (2, 0), (3, 0) and (4, 0).When x = 0, $y = (-2) \times (-3) \times 4 = 24$ So the curve crosses the y-axis at (0, 24). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$ V
- **g** y = x(x+1)(x-1)0 = x(x+1)(x-1)So x = 0, x = -1 or x = 1The curve crosses the *x*-axis at (0, 0), (-1, 0) and (1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

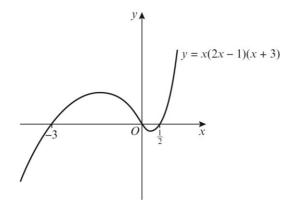


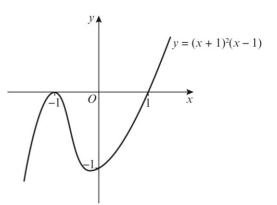
h y = x(x+1)(1-x)0 = x(x+1)(1-x)So x = 0, x = -1 or x = 1The curve crosses the *x*-axis at (0, 0), (-1, 0) and (1, 0). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$

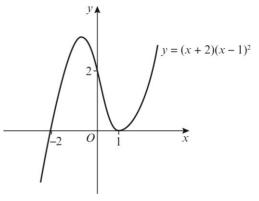
f y = x(x-2)(x+1)0 = x(x-2)(x+1)So x = 0, x = 2 or x = -1The curve crosses the *x*-axis at (0, 0), (2, 0) and (-1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$


INTERNATIONAL A LEVEL

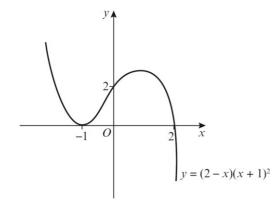
Pure Mathematics 1

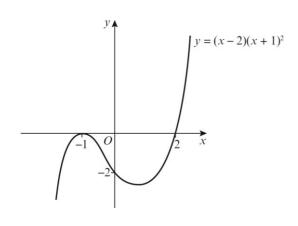

Solution Bank


1 i y = (x - 2)(2x - 1)(2x + 1) 0 = (x - 2)(2x - 1)(2x + 1)So x = 2, $x = \frac{1}{2}$ or $x = -\frac{1}{2}$ The curve crosses the x-axis at $(2, 0), (\frac{1}{2}, 0)$ and $(-\frac{1}{2}, 0)$. When $x = 0, y = (-2) \times (-1) \times 1 = 2$ So the curve crosses the y-axis at (0, 2). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$


j y = x(2x-1)(x+3) 0 = x(2x-1)(x+3)So x = 0, $x = \frac{1}{2}$ or x = -3The curve crosses the x-axis at $(0, 0), (\frac{1}{2}, 0)$ and (-3, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

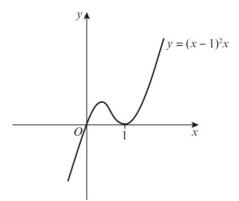
2 a $y = (x+1)^2(x-1)$ $0 = (x+1)^2(x-1)$ So x = -1 or x = 1The curve crosses the x-axis at (1, 0) and touches the x-axis at (-1, 0). When x = 0, $y = 1^2 \times (-1) = -1$ So the curve crosses the y-axis at (0, -1). $x \to \infty$, $y \to \infty$ $x \to -\infty$, $y \to -\infty$


b $y = (x + 2)(x - 1)^2$ $0 = (x + 2)(x - 1)^2$ So x = -2 or x = 1The curve crosses the x-axis at (-2, 0) and touches the x-axis at (1, 0). When $x = 0, y = 2 \times (-1)^2 = 2$ So the curve crosses the y-axis at (0, 2). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$


Solution Bank

2 c $y = (2 - x)(x + 1)^2$ $0 = (2 - x)(x + 1)^2$ So x = 2 or x = -1The curve crosses the x-axis at (2, 0) and touches the x-axis at (-1, 0). When $x = 0, y = 2 \times 1^2 = 2$ So the curve crosses the y-axis at (0, 2). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$

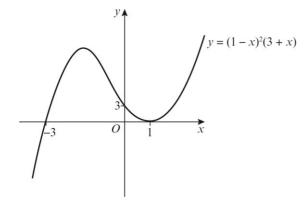
d $y = (x - 2)(x + 1)^2$ $0 = (x - 2)(x + 1)^2$ So x = 2 or x = -1The curve crosses the x-axis at (2, 0) and touches the x-axis at (-1, 0). When $x = 0, y = (-2) \times 1^2 = -2$ So the curve crosses the y-axis at (0, -2). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

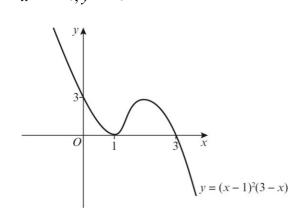


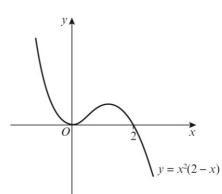
e $y = x^{2}(x + 2)$ $0 = x^{2}(x + 2)$ So x = 0 or x = -2The curve crosses the x-axis at (-2, 0) and touches the x-axis at (0, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

0

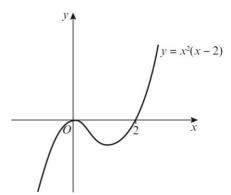
f $y = (x - 1)^2 x$ $0 = (x - 1)^2 x$ So x = 1 or x = 0The curve crosses the x-axis at (0, 0) and touches the x-axis at (1, 0). $x \to \infty, y \to \infty$


$$x \to -\infty, y \to -\infty$$


Solution Bank

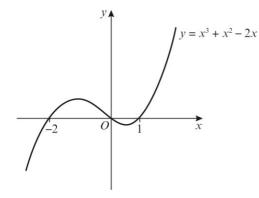

2 g $y = (1 - x)^2(3 + x)$ $0 = (1 - x)^2(3 + x)$ So x = 1 or x = -3The curve crosses the x-axis at (-3, 0) and touches the x-axis at (1, 0). When $x = 0, y = 1^2 \times 3 = 3$ So the curve crosses the y-axis at (0, 3). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

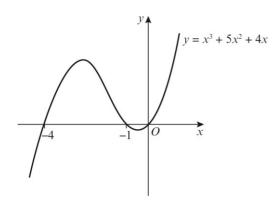
h $y = (x - 1)^2(3 - x)$ $0 = (x - 1)^2(3 - x)$ So x = 1 or x = 3The curve crosses the x-axis at (3, 0) and touches the x-axis at (1, 0). When $x = 0, y = (-1)^2 \times 3 = 3$ So the curve crosses the y-axis at (0, 3). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$



i $y = x^2(2 - x)$ $0 = x^2(2 - x)$ So x = 0 or x = 2The curve crosses the x-axis at (2, 0) and touches the x-axis at (0, 0). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$

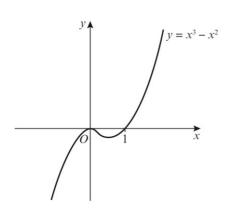
j $y = x^2(x-2)$ $0 = x^2(x-2)$ So x = 0 or x = 2The curve crosses the x-axis at (2, 0) and touches the x-axis at (0, 0).


$$\begin{array}{l} x \to \infty, \, y \to \infty \\ x \to -\infty, \, y \to -\infty \end{array}$$

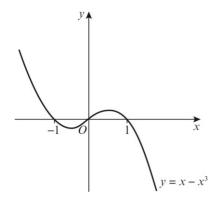

Solution Bank

3 a $y = x^3 + x^2 - 2x$ $= x(x^2 + x - 2)$ = x(x + 2)(x - 1) 0 = x(x + 2)(x - 1)So x = 0, x = -2 or x = 1The curve crosses the x-axis at (0, 0), (-2, 0) and (1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

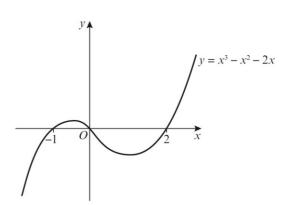
b $y = x^3 + 5x^2 + 4x$ $= x(x^2 + 5x + 4)$ = x(x + 4)(x + 1) 0 = x(x + 4)(x + 1)So x = 0, x = -4 or x = -1The curve crosses the x-axis at (0, 0), (-4, 0) and (-1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$



c $y = x^3 + 2x^2 + x$ y = x + 2x + x= $x(x^2 + 2x + 1)$ = $x(x + 1)^2$ $0 = x(x + 1)^2$ So x = 0 or x = -1The curve crosses the x-axis at (0, 0) and touches the *x*-axis at (-1, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$ $y = x^3 + 2x^2 + x$ **d** $y = 3x + 2x^2 - x^3$ $=x(3+2x-x^{2})$ =x(3-x)(1+x)0 = x(3 - x)(1 + x)So x = 0, x = 3 or x = -1The curve crosses the *x*-axis at (0, 0), (3, 0) and (-1, 0). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$ \hat{x} $= 3x + 2x^2 - x^3$


Solution Bank

3 e $y = x^3 - x^2$ $= x^2(x-1)$ $0 = x^2(x-1)$ So x = 0 or x = 1The curve crosses the x-axis at (1, 0) and touches the x-axis at (0, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

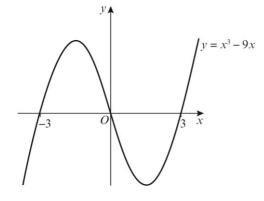

 $f \quad y = x - x^{3}$ = $x(1 - x^{2})$ = x(1 - x)(1 + x)0 = x(1 - x)(1 + x)So x = 0, x = 1 or x = -1The curve crosses the x-axis at (0, 0), (1, 0) and (-1, 0). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$

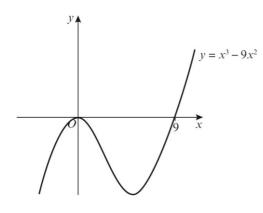
$$g \quad y = 12x^{3} - 3x$$

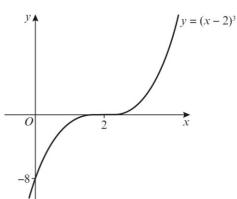
= 3x(4x² - 1)
= 3x(2x - 1)(2x + 1)
0 = 3x(2x - 1)(2x + 1)
So x = 0, x = $\frac{1}{2}$ or x = $-\frac{1}{2}$
The curve crosses the x-axis at
(0, 0), $(\frac{1}{2}, 0)$ and $(-\frac{1}{2}, 0)$.
 $x \to \infty, y \to \infty$
 $x \to -\infty, y \to -\infty$

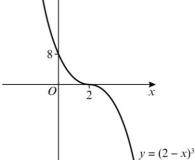
h
$$y = x^3 - x^2 - 2x$$

= $x(x^2 - x - 2)$
= $x(x + 1)(x - 2)$
 $0 = x(x + 1)(x - 2)$
So $x = 0, x = -1$ or $x = 2$

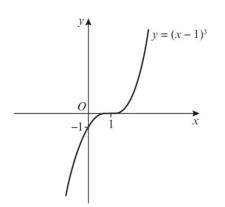

The curve crosses the *x*-axis at (0, 0), (-1, 0) and (2, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

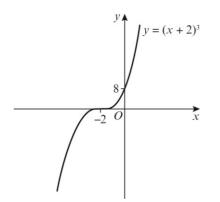

Solution Bank

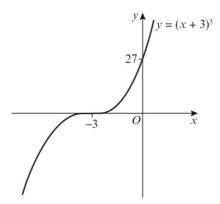

3 i $y = x^3 - 9x$ $= x(x^2 - 9)$ = x(x - 3)(x + 3) 0 = x(x - 3)(x + 3)So x = 0, x = 3 or x = -3The curve crosses the x-axis at (0, 0), (3, 0) and (-3, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$


j $y = x^3 - 9x^2$ $= x^2(x - 9)$ $0 = x^2(x - 9)$ So x = 0 or x = 9The curve crosses the x-axis at (9, 0) and touches the x-axis at (0, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

4 a $y = (x - 2)^3$ $0 = (x - 2)^3$ So x = 2 and the curve crosses the x-axis at (2, 0) only. When x = 0, $y = (-2)^3 = -8$ So the curve crosses the y-axis at (0, -8). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

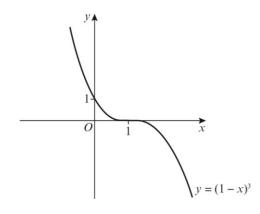

b $y = (2 - x)^3$ $0 = (2 - x)^3$ So x = 2 and the curve crosses the x-axis at (2, 0) only. When x = 0, $y = 2^3 = 8$ So the curve crosses the y-axis at (0, 8). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$ $\sqrt[y]{}$


Solution Bank


4 c $y = (x - 1)^3$ $0 = (x - 1)^3$ So x = 1 and the curve crosses the x-axis at (1, 0) only. When $x = 0, y = (-1)^3 = -1$ So the curve crosses the y-axis at (0, -1). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

d $y = (x + 2)^3$ $0 = (x + 2)^3$ So x = -2 and the curve crosses the x-axis at (-2, 0) only. When $x = 0, y = 2^3 = 8$ So the curve crosses the y-axis at (0, 8). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

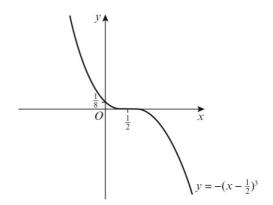
- e $y = -(x+2)^3$ $0 = -(x+2)^3$ So x = -2 and the curve crosses the x-axis at (-2, 0) only. When x = 0, $y = -2^3 = -8$ So the curve crosses the y-axis at (0, -8). $x \to \infty$, $y \to -\infty$ $x \to -\infty$, $y \to \infty$ $x \to -\infty$, $y \to \infty$
- f $y = (x + 3)^3$ $0 = (x + 3)^3$ So x = -3 and the curve crosses the x-axis at (-3, 0) only. When x = 0, $y = 3^3 = 27$ So the curve crosses the y-axis at (0, 27). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$



Solution Bank

 $= -(x-2)^3$

- 4 g $y = (x 3)^3$ $0 = (x - 3)^3$ So x = 3 and the curve crosses the x-axis at (3, 0) only. When x = 0, $y = (-3)^3 = -27$ So the curve crosses the y-axis at (0, -27). $x \to \infty$, $y \to -\infty$ $x \to -\infty$, $y \to \infty$ $y \to -\infty$, $y \to \infty$ $y \to -\infty$, $y \to \infty$
 - h $y = (1 x)^3$ $0 = (1 - x)^3$ So x = 1 and the curve crosses the x-axis at (1, 0) only. When $x = 0, y = 1^3 = 1$ So the curve crosses the y-axis at (0, 1). $x \to \infty, y \to -\infty$ $x \to -\infty, y \to \infty$


- i $y = -(x 2)^3$ $0 = -(x - 2)^3$ So x = 2 and the curve crosses the x-axis at (2, 0) only. When x = 0, $y = -(-2)^3 = 8$ So the curve crosses the y-axis at (0, 8). $x \to \infty$, $y \to -\infty$ $x \to -\infty$, $y \to \infty$
- **j** $y = -(x \frac{1}{2})^3$ $0 = -(x - \frac{1}{2})^3$

So $x = \frac{1}{2}$ and the curve crosses the *x*-axis at $(\frac{1}{2}, 0)$ only.

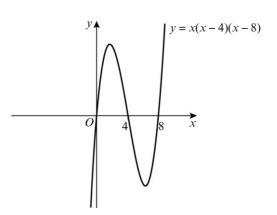
When
$$x = 0$$
, $y = -(-\frac{1}{2})^3 = \frac{1}{8}$

So the curve crosses the *y*-axis at $(0, \frac{1}{8})$.

$$\begin{array}{c} x \to \infty, y \to -\infty \\ x \to -\infty, y \to \infty \end{array}$$

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.

Solution Bank



- 5 a $y = x^{3} + bx^{2} + cx + d$ y = (x + 3)(x + 2)(x - 1) $= (x + 3)(x^{2} + x - 2)$ $= x^{3} + 4x^{2} + x - 6$ b = 4, c = 1, d = -6
 - **b** When x = 0, y = -6So the curve crosses the *y*-axis at (0, -6).
- 6 $y = ax^3 + bx^2 + cx + d$ y = a(x + 1)(x - 2)(x - 3) $= a(x + 1)(x^2 - 5x + 6)$ $= a(x^3 - 4x^2 + x + 6)$ The curve crosses the y-axis at (0, 2), so when x = 0, y = 2. 2 = a(0 - 0 + 0 + 6) $a = \frac{1}{3}$ $y = \frac{1}{3}(x^3 - 4x^2 + x + 6)$ $= \frac{1}{3}x^3 - \frac{4}{3}x^2 + \frac{1}{3}x + 2$ $a = \frac{1}{3}, b = -\frac{4}{3}, c = \frac{1}{3}, d = 2$

7 **a** $f(x) = (x - 10)(x^2 - 2x) + 12x$ = $x^3 - 12x^2 + 20x + 12x$ = $x^3 - 12x^2 + 32x$ = $x(x^2 - 12x + 32)$

b
$$f(x) = x(x^2 - 12x + 32)$$

= $x(x - 4)(x - 8)$

c 0 = x(x-4)(x-8)So x = 0, x = 4 or x = 8The curve crosses the x-axis at (0, 0), (4, 0) and (8, 0). $x \to \infty, y \to \infty$ $x \to -\infty, y \to -\infty$

