Solution Bank

Chapter review 2

1 a
$$y^2 + 3y + 2 = 0$$

(y + 1)(y + 2) = 0
y = -1 or y = -2

b
$$3x^2 + 13x - 10 = 0$$

 $(3x - 2)(x + 5) = 0$
 $x = \frac{2}{3}$ or $x = -5$

c
$$5x^2 - 10x = 4x + 3$$

 $5x^2 - 14x - 3 = 0$
 $(5x + 1)(x - 3) = 0$
 $x = -\frac{1}{5}$ or $x = 3$

d
$$(2x-5)^2 = 7$$

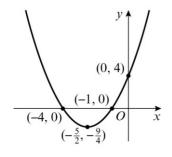
 $2x-5 = \pm\sqrt{7}$
 $2x = 5 \pm \sqrt{7}$
 $x = \frac{5 \pm \sqrt{7}}{2}$

2 a $y = x^2 + 5x + 4$

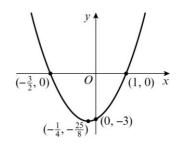
As a = 1 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = 4, so the graph crosses the y-axis at (0, 4). When y = 0, $x^2 + 5x + 4 = 0$ (x + 1)(x + 4) = 0x = -1 or x = -4, so the graph crosses the x-axis at (-1, 0) and (-4, 0). Completing the square: $x^2 + 5x + 4 = (x + \frac{5}{2})^2 - (\frac{5}{2})^2 + 4$

$$= \left(x + \frac{5}{2}\right)^2 - \frac{9}{4}$$

So the minimum point is at $\left(-\frac{5}{2}, -\frac{9}{4}\right)$.



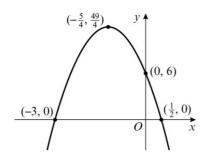
2 **b** $y = 2x^2 + x - 3$ As a = 2 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = -3, so the graph crosses the y-axis at (0, -3). When y = 0, $2x^2 + x - 3 = 0$ (2x + 3)(x - 1) = 0 $x = -\frac{3}{2}$ or x = 1, so the graph crosses the x-axis at $(-\frac{3}{2}, 0)$ and (1, 0). Completing the square: $2x^2 + x - 3 = 2(x^2 + \frac{1}{2}x) - 3$ $= 2((x + \frac{1}{4})^2 - (\frac{1}{4})^2) - 3$ $= 2(x + \frac{1}{4})^2 - \frac{25}{8}$ So the minimum point is at $(-\frac{1}{4}, \frac{25}{8})$.



c $y = 6 - 10x - 4x^2$ As a = -4 is negative, the graph has a \bigwedge shape and a maximum point. When x = 0, y = 6, so the graph crosses the y-axis at (0, 6). When y = 0, $6 - 10x - 4x^2 = 0$ (1 - 2x)(6 + 2x) = 0 $x = \frac{1}{2}$ or x = -3, so the graph crosses the x-axis at $(\frac{1}{2}, 0)$ and (-3, 0). Completing the square: $6 - 10x - 4x^2 = -4x^2 - 10x + 6$ $= -4(x^2 + \frac{5}{2}x) + 6$ $= -4((x + \frac{5}{4})^2 - (\frac{5}{4})^2) + 6$ $= -4(x + \frac{5}{4})^2 + \frac{49}{4}$

Solution Bank

2 c So the maximum point is at $\left(-\frac{5}{4}, \frac{49}{4}\right)$.



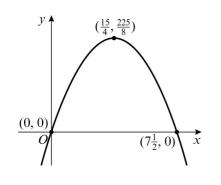
d $y = 15x - 2x^2$

As a = -2 is negative, the graph has a \bigwedge shape and a maximum point. When x = 0, y = 0, so the graph crosses the y-axis at (0, 0). When y = 0, $15x - 2x^2 = 0$ x(15 - 2x) = 0x = 0 or $x = 7\frac{1}{2}$, so the graph crosses the x-axis at (0, 0) and $(7\frac{1}{2}, 0)$. Completing the square: $15x - 2x^2 = -2x^2 + 15x$

$$-2x = -2x + 15x$$

= $-2\left(x^2 - \frac{15}{2}x\right)$
= $-2\left(\left(x - \frac{15}{4}\right)^2 - \left(\frac{15}{4}\right)^2\right)$
= $-2\left(x - \frac{15}{4}\right)^2 + \frac{225}{8}$

So the maximum point is at $\left(\frac{15}{4}, \frac{225}{8}\right)$.



3 a
$$f(3) = 3^2 + 3(3) - 5 = 13$$

 $g(3) = 4(3) + k = 12 + k$
 $f(3) = g(3)$
 $13 = 12 + k$
 $k = 1$

- **3** b $x^{2} + 3x 5 = 4x + 1$ $x^{2} - x - 6 = 0$ (x - 3)(x + 2) = 0x = 3 or x = -2
- 4 a $k^{2} + 11k 1 = 0$ a = 1, b = 11 and c = -1Using the quadratic formula: $k = \frac{-11 \pm \sqrt{11^{2} - 4(1)(-1)}}{2(1)}$ $= \frac{-11 \pm \sqrt{125}}{2}$ So k = 0.0902 or k = -11.1
 - **b** $2t^2 5t + 1 = 0$ a = 2, b = -5 and c = 1Using the quadratic formula: $t = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(1)}}{2(2)}$ $= \frac{5 \pm \sqrt{17}}{4}$ So t = 2.28 or t = 0.219
 - c $10 x x^2 = 7$ $\Rightarrow x^2 + x - 3 = 0$ a = 1, b = 1 and c = -3Using the quadratic formula: $x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-3)}}{2 \times 1}$ $= \frac{-1 \pm \sqrt{13}}{2}$ So x = -2.30 or x = 1.30d $(3x - 1)^2 = 3 - x^2$ $9x^2 - 3x - 3x + 1 = 3 - x^2$ $10x^2 - 6x - 2 = 0$ a = 10, b = -6 and c = -2Using the quadratic formula: $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(10)(-2)}}{2(10)}$ $= \frac{6 \pm \sqrt{116}}{20}$

So x = 0.839 or x = -0.239

Solution Bank

5	a	$x^{2} + 12x - 9 = (x + 6)^{2} - 36 - 9$ $= (x + 6)^{2} - 45$
		p = 1, q = 6 and r = -45
	b	$5x^{2} - 40x + 13 = 5(x^{2} - 8x) + 13$ = 5((x - 4) ² - 16) + 13 = 5(x - 4) ² - 67
		p = 5, q = -4 and r = -67
	c	$8x - 2x^{2} = -2x^{2} + 8x$ = -2(x ² - 4x) = -2((x - 2)^{2} - 4)
		$= -2(x-2)^2 + 8$ p = -2, q = -2 and $r = 8$
	d	$3x^{2} - (x + 1)^{2} = 3x^{2} - (x^{2} + x + x + 1)$ $= 2x^{2} - 2x - 1$
		$= 2(x^{2} - x) - 1$ = $2\left(\left(x - \frac{1}{2}\right)^{2} - \frac{1}{4}\right) - 1$
		$=2\left(x-\frac{1}{2}\right)-\frac{3}{2}$
		$p = 2, q = -\frac{1}{2}$ and $r = -\frac{3}{2}$

6
$$5x^{2} - 2x + k = 0$$

$$a = 5, b = -2 \text{ and } c = k$$

For exactly one solution, $b^{2} - 4ac = 0$

$$(-2)^{2} - 4 \times 5 \times k = 0$$

$$4 - 20k = 0$$

$$4 = 20k$$

$$k = \frac{1}{5}$$

7 a
$$3x^2 + 12x + 5 = p(x+q)^2 + r$$

 $3x^2 + 12x + 5 = p(x^2 + 2qx + q^2) + r$
 $3x^2 + 12x + 5 = px^2 + 2pqx + pq^2 + r$
Comparing $x^2: p = 3$ (1)
Comparing $x: 2pq = 12$ (2)
Comparing constants: $pq^2 + r = 5$ (3)
Substitute (1) into (2):
 $2 \times 3 \times q = 12$
 $q = 2$
Substitute $p = 3$ and $q = 2$ into (3)
 $3 \times 2^2 + r = 5$
 $12 + r = 5$
 $r = -7$
So $p = 3, q = 2$ and $r = -7$
b $3x^2 + 12x + 5 = 0$
 $3(x+2)^2 - 7 = 0$
 $3(x+2)^2 = 7$

$$(x+2)^2 = \frac{7}{3}$$

- **7 b** $x + 2 = \pm \sqrt{\frac{7}{3}}$ So $x = -2 \pm \sqrt{\frac{7}{3}}$
- 8 a $2^{2x} 20(2^x) + 64 = (2^x)^2 20(2^x) + 64$ = $(2^x - 16)(2^x - 4)$
 - **b** $f(x) = (2^{x} 16)(2^{x} 4)$ Then either $2^{x} = 16 \Rightarrow x = 4$ or $2^{x} = 4 \Rightarrow x = 2$ x = 2 or x = 4

9
$$2(x + 1)(x - 4) - (x - 2)^{2} = 0$$

$$2(x^{2} - 3x - 4) - (x^{2} - 4x + 4) = 0$$

$$2x^{2} - 6x - 8 - x^{2} + 4x - 4 = 0$$

$$x^{2} - 2x - 12 = 0$$

$$a = 1, b = -2, c = -12$$

Using the quadratic formula:

$$(-2) + \sqrt{(-2)^{2} - 4(1)(-12)}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-12)}}{2(1)}$$
$$= \frac{2 \pm \sqrt{52}}{2}$$
$$= \frac{2 \pm \sqrt{4 \times 13}}{2}$$
$$= \frac{2 \pm 2\sqrt{13}}{2}$$
So $x = 1 \pm \sqrt{13}$

- 10 (x-1)(x+2) = 18 $x^{2}+x-2 = 18$ $x^{2}+x-20 = 0$ (x+5)(x-4) = 0x = -5 or x = 4
- **11 a** The springboard is 10 m above the water, since this is the height at time 0.
 - b When h = 0, $5t 10t^2 + 10 = 0$ $-10t^2 + 5t + 10 = 0$ a = -10, b = 5 and c = 10Using the quadratic formula: $t = \frac{-5 \pm \sqrt{5^2 - 4(-10)(10)}}{2(-10)}$ $= \frac{-5 \pm \sqrt{425}}{-20}$

Solution Bank

P Pearson

- 11 b t = -0.78 or t = 1.28 (to 3 s.f.) t cannot be negative, so the time is 1.28 seconds.
 - c $-10t^2 + 5t + 10$ = $-10(t^2 - 0.5t) + 10$ = $-10((t - 0.25)^2 - 0.0625) + 10$ = $10.625 - 10(t - 0.25)^2$ A = 10.625, B = 10 and C = 0.25
 - **d** The maximum height is when t 0.25 = 0, therefore when t = 0.25 s, h = 10.625 m.
- 12 a $f(x) = 4kx^2 + (4k + 2)x + 1$ a = 4k, b = (4k + 2) and c = 1 $b^2 - 4ac = (4k + 2)^2 - 4 \times 4k \times 1$ $= 16k^2 + 8k + 8k + 4 - 16k$ $= 16k^2 + 4$
 - **b** $16k^2 + 4$ $k^2 \ge 0$ for all values of k, therefore $16k^2 + 4 > 0$ As $b^2 - 4ac = 16k^2 + 4 > 0$, f(x) has two distinct real roots.
 - c When k = 0, $f(x) = 4(0)x^2 + (4(0) + 2)x + 1 = 2x + 1$ 2x + 1 is a linear function with only one root, so f(x) cannot have two distinct real roots when k = 0.
- 13

$$x^{8} - 17x^{4} + 16 = 0$$

(x⁴)² - 17(x⁴) + 16 = 0
(x⁴ - 1)(x⁴ - 16) = 0
Then either x⁴ = 1 \Rightarrow x = ±1
or x⁴ = 16 \Rightarrow x = ±2
So x = -2, x = -1, x = 1 or x = 2

Challenge

a
$$\frac{a}{b} = \frac{b}{c}$$
$$\frac{b+c}{b} = \frac{b}{c}$$
$$b^{2}-bc-c^{2} = 0$$
Using the quadratic formula:
$$b = \frac{-(c) \pm \sqrt{(-c)^{2} - 4(1)(-c^{2})}}{2(1)}$$
$$= \frac{c \pm \sqrt{5c^{2}}}{2}$$
$$= \frac{c \pm c \sqrt{5}}{2}$$
So $b: c = \frac{c \pm c \sqrt{5}}{2}: c$ Dividing by $c:$
$$\frac{1 \pm \sqrt{5}}{2}: 1$$
The length cannot be negative so
$$b: c = \frac{1 + \sqrt{5}}{2}: 1$$
B Let $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}$ So $x = \sqrt{1 + x}$ Squaring both sides:
$$x^{2} = 1 + x$$
$$x^{2} - x - 1 = 0$$
Using the quadratic formula:
$$x = \frac{1 \pm \sqrt{(-1)^{2} - 4(1)(-1)}}{2(1)}$$
$$= \frac{1 \pm \sqrt{5}}{2}$$
The square root cannot be negative so
$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}} = \frac{1 + \sqrt{5}}{2}$$