# **Pure Mathematics 1**

Solution Bank



### **Exercise 2G**

1 **a** i 
$$f(x) = x^2 + 8x + 3$$
  
 $b^2 - 4ac = 8^2 - 4(1)(3)$   
 $= 64 - 12$   
 $= 52$   
ii  $g(x) = 2x^2 - 3x + 4$   
 $b^2 - 4ac = (-3)^2 - 4(2)(4)$   
 $= 9 - 32$   
 $= -23$   
iii  $h(x) = -x^2 + 7x - 3$   
 $b^2 - 4ac = 7^2 - 4(-1)(-3)$   
 $= 49 - 12$   
 $= 37$   
iv  $j(x) = x^2 - 8x + 16$   
 $b^2 - 4ac = (-8)^2 - 4(1)(16)$   
 $= 64 - 64$   
 $= 0$   
v  $k(x) = 2x - 3x^2 - 4$   
 $= -3x^2 + 2x - 4$   
 $b^2 - 4ac = (2)^2 - 4(-3)(-4)$   
 $= 4 - 48$ 

**b** i This graph has two distinct real roots and has a maximum, so a < 0: h(x).

= -44

- ii This graph has two distinct real roots and has a minimum, so a > 0: f(x).
- iii This graph has no real roots and has a maximum, so a < 0: k(x).
- iv This graph has one repeated root and has a minimum, so a > 0: j(x).
- **v** This graph has no real roots and has a minimum, so a > 0: g(x).

- 2  $x^{2} + 6x + k = 0$  a = 1, b = 6 and c = kFor two real solutions,  $b^{2} - 4ac > 0$   $6^{2} - 4 \times 1 \times k > 0$  36 - 4k > 0 36 > 4k 9 > kSo k < 9
- 3  $2x^{2} 3x + t = 0$  a = 2, b = -3 and c = tFor exactly one solution,  $b^{2} - 4ac = 0$   $(-3)^{2} - 4 \times 2 \times t = 0$  9 - 8t = 0So  $t = \frac{9}{8}$
- 4  $f(x) = sx^{2} + 8x + s$  a = s, b = 8 and c = sFor equal roots,  $b^{2} - 4ac = 0$   $8^{2} - 4 \times s \times s = 0$   $64 - 4s^{2} = 0$   $64 = 4s^{2}$   $16 = s^{2}$ So  $s = \pm 4$ The positive solution is s = 4.
- 5  $3x^2 4x + k = 0$  a = 3, b = -4 and c = kFor no real solutions,  $b^2 - 4ac < 0$   $(-4)^2 - 4 \times 3 \times k < 0$  16 - 12k < 0 16 < 12k 4 < 3kSo  $k > \frac{4}{3}$
- 6 a  $g(x) = x^2 + 3px + (14p 3)$  a = 1, b = 3p and c = (14p - 3)For two equal roots,  $b^2 - 4ac = 0$   $(3p)^2 - 4 \times 1 \times (14p - 3) = 0$   $9p^2 - 56p + 12 = 0$  (p - 6)(9p - 2) = 0 p = 6 or  $p = \frac{2}{9}$ p is an integer, so p = 6

# **Pure Mathematics 1**

## Solution Bank



- 6 b When p = 6,  $x^{2} + 3px + (14p - 3)$   $= x^{2} + 3(6)x + (14(6) - 3)$   $= x^{2} + 18x + 81$   $x^{2} + 18x + 81 = 0$  (x + 9)(x + 9) = 0So x = -9
- 7 **a**  $h(x) = 2x^2 + (k+4)x + k$  a = 2, b = (k+4) and c = k  $b^2 - 4ac = (k+4)^2 - 4 \times 2 \times k$   $= k^2 + 8k + 16 - 8k = k^2 + 16$ 
  - **b**  $k^2 \ge 0$ , therefore  $k^2 + 16$  is also > 0. If  $b^2 - 4ac > 0$ , then h(x) has two distinct real roots.

#### Challenge

- a For distinct real roots,  $b^2 4ac > 0$ . Therefore  $b^2 > 4ac$ If a > 0 and c > 0, or a < 0 and c < 0, choose b such that  $b > \sqrt{4ac}$ . If a > 0 and c < 0, or a < 0 and c > 0, 4ac < 0, therefore  $4ac < b^2$  for all b.
- **b** For equal roots,  $b^2 4ac = 0$ . Therefore  $b^2 = 4ac$ . If 4ac < 0, then there is no value for *b* to satisfy  $b^2 = 4ac$  as  $b^2$  is always positive.