Solution Bank

Exercise 2F

1 a $y = x^2 - 6x + 8$

As a = 1 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = 8, so the graph crosses the y-axis at (0, 8). When y = 0, $x^2 - 6x + 8 = 0$ (x - 2)(x - 4) = 0x = 2 or x = 4, so the graph crosses the x-axis at (2, 0) and (4, 0). Completing the square: $x^2 - 6x + 8 = (x - 3)^2 - 9 + 8$ $= (x - 3)^2 - 1$ So the minimum point is (3, -1) and

So the minimum point is (3, -1), and the line of symmetry is x = 3.

b $y = x^2 + 2x - 15$ As a = 1 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = -15, so the graph crosses the y-axis at (0, -15). When y = 0, $x^2 + 2x - 15 = 0$ (x - 3)(x + 5) = 0 x = 3 or x = -5, so the graph crosses the x-axis at (3, 0) and (-5, 0). Completing the square: $x^2 + 2x - 15 = (x + 1)^2 - 1 - 15$ $= (x + 1)^2 - 16$ So the minimum point is (-1, -16), and the line of symmetry is x = -1.

c $y = 25 - x^2$ As a = -1 is negative, the graph has a \bigwedge shape and a maximum point. When x = 0, y = 25, so the graph crosses the y-axis at (0, 25). When y = 0, $25 - x^2 = 0$ (5 + x)(5 - x) = 0 x = -5 or x = 5, so the graph crosses the x-axis at (-5, 0) and (5, 0). Completing the square: $25 - x^2 = -x^2 + 0x + 25$

 $25 - x^{2} = -x^{2} + 0x + 25$ = -(x^{2} - 0x - 25) = -(x - 0)^{2} + 25

So the maximum point is (0, 25), and the line of symmetry is x = 0.

d $y = x^2 + 3x + 2$ As a = 1 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = 2, so the graph crosses the y-axis at (0, 2). When y = 0, $x^2 + 3x + 2 = 0$ (x + 2)(x + 1) = 0 x = -2 or x = -1, so the graph crosses the x-axis at (-2, 0) and (-1, 0). Completing the square: $x^2 + 3x + 2 = (x + \frac{3}{2})^2 - \frac{9}{4} + 2 = (x + \frac{3}{2})^2 - \frac{1}{4}$ So the minimum point is $(-\frac{3}{2}, -\frac{1}{4})$, and the line of symmetry is $x = -\frac{3}{2}$.

Solution Bank

e $y = -x^2 + 6x + 7$ As a = -1 is negative, the graph has a \bigwedge shape and a maximum point. When x = 0, y = 7, so the graph crosses the y-axis at (0, 7). When y = 0, $-x^2 + 6x + 7 = 0$ (-x - 1)(x - 7) = 0 x = -1 or x = 7, so the graph crosses the x-axis at (-1, 0) and (7, 0). Completing the square: $-x^2 + 6x + 7 = -(x^2 - 6x) + 7$ $= -((x - 3)^2 - 9) + 7$ $= -((x - 3)^2 + 16$

So the maximum point is (3, 16), and the line of symmetry is x = 3.

f $y = 2x^2 + 4x + 10$ As a = 2 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = 10, so the graph crosses the y-axis at (0, 10). When y = 0, $2x^2 + 4x + 10 = 0$ Using the quadratic formula, $-4 \pm \sqrt{4^2 - 4(2)(10)} - 4 \pm \sqrt{-64}$

$$x = \frac{-4 \pm \sqrt{4} - 4(2)(10)}{2 \times 2} = \frac{-4 \pm \sqrt{-0}}{4}$$

There are no real solutions, so the graph does not cross the x-axis.

Completing the square:

$$2x^{2} + 4x + 10 = 2(x^{2} + 2x) + 10$$

= 2((x + 1)² - 1) + 10
= 2(x + 1)² + 8

So the minimum point is (-1, 8), and the line of symmetry is x = -1.

g $y = 2x^2 + 7x - 15$ As a = 2 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = -15, so the graph crosses the y-axis at (0, -15). When y = 0, $2x^2 + 7x - 15 = 0$ (2x - 3)(x + 5) = 0 $x = \frac{3}{2}$ or x = -5, so the graph crosses the x-axis at $(\frac{3}{2}, 0)$ and (-5, 0). Completing the square: $2x^2 + 7x - 15 = 2(x^2 + \frac{7}{2}x) - 15$ $= 2((x + \frac{7}{4})^2 - \frac{49}{16}) - 15$ $= 2(x + \frac{7}{4})^2 - \frac{169}{8}$

So the minimum point is $\left(-\frac{7}{4}, -\frac{169}{8}\right)$, and the line of symmetry is $x = -\frac{7}{4}$.

Solution Bank

1 h y = 6x² - 19x + 10 As a = 6 is positive, the graph has a ∨ shape and a minimum point. When x = 0, y = 10, so the graph crosses the y-axis at (0, 10). When y = 0, 6x² - 19x + 10 = 0 (3x - 2)(2x - 5) = 0 x = $\frac{2}{3}$ or x = $\frac{5}{2}$, so the graph crosses the x-axis at $(\frac{2}{3}, 0)$ and $(\frac{5}{2}, 0)$. Completing the square: 6x² - 19x + 10 = 6(x² - $\frac{19}{6}x$) + 10 = 6((x - $\frac{19}{12}$)² - $\frac{361}{144}$) + 10 = 6(x - $\frac{19}{12}$)² - $\frac{121}{24}$

> So the minimum point is $\left(\frac{19}{12}, -\frac{121}{24}\right)$, and and the line of symmetry is $x = \frac{19}{12}$.

i $y = 4 - 7x - 2x^2$ As a = -2 is negative, the graph has a \bigwedge shape and a maximum point. When x = 0, y = 4, so the graph crosses the y-axis at (0, 4). When y = 0, $-2x^2 - 7x + 4 = 0$ (-2x + 1)(x + 4) = 0 $x = \frac{1}{2}$ or x = -4, so the graph crosses the x-axis at $(\frac{1}{2}, 0)$ and (-4, 0). Completing the square: $-2x^2 - 7x + 4 = -2(x^2 + \frac{7}{2}x) + 4$ $= -2((x + \frac{7}{4})^2 - \frac{49}{16}) + 4$ $= -2(x + \frac{7}{4})^2 + \frac{81}{8}$ i So the maximum point is $\left(-\frac{7}{4}, \frac{81}{8}\right)$, and the line of symmetry is $x = -\frac{7}{4}$.

j $y = 0.5x^2 + 0.2x + 0.02$ As a = 0.5 is positive, the graph has a \bigvee shape and a minimum point. When x = 0, y = 0.02, so the graph crosses the y-axis at (0, 0.02). When y = 0, $0.5x^2 + 0.2x + 0.02 = 0$

Using the quadratic formula,

$$x = \frac{-0.2 \pm \sqrt{0.2^2 - 4(0.5)(0.02)}}{2 \times 0.5}$$
$$= -0.2 \pm \sqrt{0}$$
$$= -0.2$$
There is only one solution, so the touches the *x*-axis.

touches the *x*-axis. Completing the square:

graph

$$0.5x^{2} + 0.2x + 0.02$$

= 0.5(x² + 0.4x) + 0.02
= 0.5((x + 0.2)² - 0.04) + 0.02
= 0.5(x + 0.2)²

So the minimum point is (-0.2, 0), and the line of symmetry is x = -0.2.

Solution Bank

- 2 a The graph crosses the y-axis at (0, 15), so c = 15. The graph crosses the x-axis at (3, 0)and (5, 0) and has a minimum value. (x-3)(x-5) = 0 $x^2 - 8x + 15 = 0$ a = 1, b = -8 and c = 15
 - **b** The graph crosses the *y*-axis at (0, 10), so c = 10. The graph crosses the *x*-axis at (-2, 0) and (5, 0) and has a maximum value. -(x + 2)(x - 5) = 0 $-x^2 + 3x + 10 = 0$ a = -1, b = 3 and c = 10
 - c The graph crosses the *y*-axis at (0, -18), so c = -18. The graph crosses the *x*-axis at (-3, 0)and (3, 0) and has a minimum value. (x + 3)(x - 3) = 0 $x^2 + 0x - 9 = 0$ But c = -18, not -9, so $2(x^2 + 0x - 9) = 0$, a = 2, b = 0 and c = -18

d The graph crosses the *y*-axis at (0, -1), so c = -1. The graph crosses the *x*-axis at (-1, 0)and (4, 0) and has a minimum value. (x + 1)(x - 4) = 0 $x^2 - 3x - 4 = 0$ But c = -1, not -4, so $\frac{1}{4}(x^2 - 3x - 4) = 0$, $a = \frac{1}{4}, b = -\frac{3}{4}$ and c = -1

3 Minimum value = (5, -3), so the line of symmetry is x = 5. The reflection of (4, 0) in the line x = 5is (6, 0). (x - 6)(x - 4) = 0 $x^2 - 10x + 24 = 0$ Completing the square: $x^2 - 10x + 24 = (x - 5)^2 - 25 + 24$ $= (x - 5)^2 - 1$ But the minimum value is (5, -3), therefore: $y = 3(x - 5)^2 - 3$ $= 3x^2 - 30x + 72$ a = 3, b = -30 and c = 72