Core Mathematics C1 Paper J

1. Evaluate $49^{\frac{1}{2}} + 8^{\frac{2}{3}}$. [3]

2. Solve the equation

$$3x - \frac{5}{x} = 2. ag{4}$$

3. Find the set of values of x for which

(i)
$$6x - 11 > x + 4$$
, [2]

(ii)
$$x^2 - 6x - 16 < 0$$
. [3]

- **4.** (i) Sketch on the same diagram the graphs of $y = (x-1)^2(x-5)$ and y = 8-2x.
 - Label on your diagram the coordinates of any points where each graph meets the coordinate axes. [5]
 - (ii) Explain how your diagram shows that there is only one solution, α , to the equation

$$(x-1)^2(x-5) = 8-2x.$$
 [1]

(iii) State the integer, n, such that

$$n < \alpha < n + 1. \tag{1}$$

5. $f(x) = x^2 - 10x + 17.$

(a) Express
$$f(x)$$
 in the form $a(x+b)^2 + c$. [3]

- (b) State the coordinates of the minimum point of the curve y = f(x). [1]
- (c) Deduce the coordinates of the minimum point of each of the following curves:

(i)
$$y = f(x) + 4$$
, [2]

$$(ii) \quad y = f(2x). \tag{2}$$

6.	The points P ,	Q and R have	e coordinates	(-5, 2),	(-3, 8)) and (9, 4) respectively

(i) Show that $\angle PQR = 90^{\circ}$. [4]

Given that P, Q and R all lie on a circle,

- (ii) find the coordinates of the centre of the circle, [3]
- (iii) show that the equation of the circle can be written in the form

$$x^2 + y^2 - 4x - 6y = k$$

where k is an integer to be found.

- 7. The straight line l_1 has gradient $\frac{3}{2}$ and passes through the point A (5, 3).
 - (i) Find an equation for l_1 in the form y = mx + c. [2]

The straight line l_2 has the equation 3x - 4y + 3 = 0 and intersects l_1 at the point B.

- (ii) Find the coordinates of B. [3]
- (iii) Find the coordinates of the mid-point of AB. [2]
- (iv) Show that the straight line parallel to l_2 which passes through the mid-point of AB also passes through the origin. [4]

Turn over

[3]

8.

The diagram shows the curve with equation $y = 2 + 3x - x^2$ and the straight lines l and m.

The line l is the tangent to the curve at the point A where the curve crosses the y-axis.

(i) Find an equation for l. [5]

The line m is the normal to the curve at the point B.

Given that l and m are parallel,

(ii) find the coordinates of
$$B$$
. [6]

9. The curve *C* has the equation

$$y = 3 - x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}, \quad x > 0.$$

- (i) Find the coordinates of the points where C crosses the x-axis. [4]
- (ii) Find the exact coordinates of the stationary point of C. [5]
- (iii) Determine the nature of the stationary point. [2]
- (iv) Sketch the curve C. [2]