Core Mathematics C1 Paper E

- 1. (i) Express $\frac{21}{\sqrt{7}}$ in the form $k\sqrt{7}$. [2]
 - (ii) Express $8^{-\frac{1}{3}}$ as an exact fraction in its simplest form. [2]
- 2. Find $\frac{dy}{dx}$ when

(i)
$$y = x - 2x^2$$
, [2]

(ii)
$$y = \frac{3}{x^2}$$
. [2]

- 3. (a) Express $x^2 10x + 27$ in the form $(x+p)^2 + q$. [3]
 - (b) Sketch the curve with equation $y = x^2 10x + 27$, showing on your sketch
 - (i) the coordinates of the vertex of the curve,
 - (ii) the coordinates of any points where the curve meets the coordinate axes. [3]
- **4.** The straight line l_1 has gradient 2 and passes through the point with coordinates (4, -5).
 - (i) Find an equation for l_1 in the form y = mx + c. [2]

The straight line l_2 is perpendicular to the line with equation 3x - y = 4 and passes through the point with coordinates (3, 0).

- (ii) Find an equation for l_2 . [3]
- (iii) Find the coordinates of the point where l_1 and l_2 intersect. [3]

5. Given that the equation

$$4x^2 - kx + k - 3 = 0$$

where k is a constant, has real roots,

(i) show that

$$k^2 - 16k + 48 \ge 0, [2]$$

- (ii) find the set of possible values of k, [3]
- (iii) state the smallest value of k for which the roots are equal and solve the equation when k takes this value. [3]
- **6.** The points P and Q have coordinates (-2, 6) and (4, -1) respectively.

Given that PQ is a diameter of circle C,

- (i) find the coordinates of the centre of C, [2]
- (ii) show that C has the equation

$$x^2 + y^2 - 2x - 5y - 14 = 0.$$
 [5]

The point R has coordinates (2, 7).

- (iii) Show that R lies on C and hence, state the size of $\angle PRQ$ in degrees. [2]
- 7. (i) Describe fully the single transformation that maps the graph of y = f(x) onto the graph of y = f(x 1). [2]
 - (ii) Showing the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes, sketch the graph of $y = \frac{1}{x-1}$. [3]
 - (iii) Find the x-coordinates of any points where the graph of $y = \frac{1}{x-1}$ intersects the graph of $y = 2 + \frac{1}{x}$. Give your answers in the form $a + b\sqrt{3}$, where a and b are rational. [5]

Turn over

8.

The diagram shows the curve C with the equation $y = x^3 + 3x^2 - 4x$ and the straight line l.

The curve C crosses the x-axis at the origin, O, and at the points A and B.

(i) Find the coordinates of A and B. [3]

The line l is the tangent to C at O.

- (ii) Find an equation for l. [4]
- (iii) Find the coordinates of the point where l intersects C again. [4]
- **9.** The curve with equation $y = 2x^{\frac{3}{2}} 8x^{\frac{1}{2}}$ has a minimum at the point A.

(i) Find
$$\frac{dy}{dx}$$
. [3]

(ii) Find the x-coordinate of A. [3]

The point *B* on the curve has *x*-coordinate 2.

(iii) Find an equation for the tangent to the curve at B in the form y = mx + c. [6]