## Core Mathematics C1 Paper D

## 1. Solve the equation

$$x^2 - 4x - 8 = 0$$

giving your answers in the form  $a + b\sqrt{3}$  where a and b are integers. [3]

## **2.** The curve *C* has the equation

$$y = x^2 + ax + b,$$

where a and b are constants.

Given that the minimum point of C has coordinates (-2, 5), find the values of a and b. [4]

## **3.** (i) Solve the simultaneous equations

$$y = x^2 - 6x + 7$$

$$y = 2x - 9 \tag{4}$$

- (ii) Hence, describe the geometrical relationship between the curve  $y = x^2 6x + 7$  and the straight line y = 2x 9. [1]
- **4.** (i) Evaluate

$$(36^{\frac{1}{2}} + 16^{\frac{1}{4}})^{\frac{1}{3}}$$
. [3]

(ii) Solve the equation

$$3x^{-\frac{1}{2}} - 4 = 0. ag{3}$$

5. (i) Sketch on the same diagram the curve with equation  $y = (x - 2)^2$  and the straight line with equation y = 2x - 1.

Label on your sketch the coordinates of any points where each graph meets the coordinate axes. [4]

(ii) Find the set of values of x for which

$$(x-2)^2 > 2x-1.$$
 [3]

**6.** (i) Given that  $y = x^{\frac{1}{3}}$ , show that the equation

$$2x^{\frac{1}{3}} + 3x^{-\frac{1}{3}} = 7$$

can be rewritten as

$$2y^2 - 7y + 3 = 0. ag{3}$$

(ii) Hence, solve the equation

$$2x^{\frac{1}{3}} + 3x^{-\frac{1}{3}} = 7. ag{4}$$

**7.** Given that

$$y = \sqrt{x} - \frac{4}{\sqrt{x}},$$

(i) find 
$$\frac{dy}{dx}$$
, [3]

(ii) find 
$$\frac{d^2y}{dx^2}$$
, [2]

(iii) show that

$$4x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} - y = 0.$$
 [3]

8.  $f(x) = 2 + 6x^2 - x^3.$ 

- (i) Find the coordinates of the stationary points of the curve y = f(x). [4]
- (ii) Determine whether each stationary point is a maximum or minimum point. [3]
- (iii) Sketch the curve y = f(x). [2]
- (iv) State the set of values of k for which the equation f(x) = k has three solutions. [1]

Turn over

- **9.** The points P and Q have coordinates (7, 4) and (9, 7) respectively.
  - (i) Find an equation for the straight line l which passes through P and Q. Give your answer in the form ax + by + c = 0, where a, b and c are integers. [4]

The straight line m has gradient 8 and passes through the origin, O.

(ii) Write down an equation for 
$$m$$
. [1]

The lines l and m intersect at the point R.

(iii) Show that 
$$OP = OR$$
. [5]

10.



The diagram shows the circle *C* and the straight line *l*.

The centre of C lies on the x-axis and l intersects C at the points A(2, 4) and B(8, -8).

- (i) Find the gradient of l. [2]
- (ii) Find the coordinates of the mid-point of AB. [2]
- (iii) Find the coordinates of the centre of C. [5]
- (iv) Show that C has the equation

$$x^2 + y^2 - 18x + 16 = 0.$$
 [3]