4721

1 (i) <i>n</i> =	= -2	B1 1	
(ii) <i>n</i> =	= 3	B1 1	
(iii)			$\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or
			$4 \times \sqrt{4}$ with brackets correct if used
n	$=\frac{3}{2}$	A1	
		2	
2 (i)		M1	$y = (x \pm 2)^2$
y	$=(x-2)^2$	A1	
(ii) y	$= -(x^3 - 4)$	B1	oe
$\frac{1}{3}$ (i) $\sqrt{2}$	$2 \times 100 = 10\sqrt{2}$	B1 1	
(ii) $\frac{12}{\sqrt{2}}$	$\frac{2}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$	B1	
(iii) 10	$0\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$	1 M1 A1 2	Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$
4 v	$=x^{\frac{1}{2}}$		
		M1*	Use a substitution to obtain a quadratic or
		M1dep(factorise into 2 brackets each containing $x^{\frac{1}{2}}$ Correct method to solve a quadratic
y	$=\frac{1}{2}, y=3$	A1	
	-	M1	Attempt to square to obtain x
<i>x</i> =	$=\frac{1}{4}, x=9$	A1	
			irst M1 not gained and 3 and ½ as final answers, award B1

4721 Core Mathematics 1

5		M1 Attempt to differentia	te
0		A1 $kx^{-\frac{1}{2}}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$		
		A1	
	$=4\left(\frac{1}{\sqrt{9}}\right)+1$	M1 Correct substitution of	f $x = 9$ into their
$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=\frac{7}{3}$	A1 $\frac{7}{3}$ only	
dx	3		
		5	
6 (i)	(x-5)(x+2)(x+5)	B1 $x^2 - 3x - 10$ or $x^2 + 7x$ seen	$x + 10 \text{ or } x^2 - 25$
	$=(x^2 - 3x - 10)(x + 5)$	M1 Attempt to multiply a factor	quadratic by a linear
	$= x^3 + 2x^2 - 25x - 50$	A1 3	
	-50		
		B1 +ve cubic with 3 roots	
		B1 $\sqrt{(0, -50)}$ labelled or inc B1 (-5, 0), (-2, 0), (5, 0)	labelled or indicated
		on <i>x</i> -axis and no other 3	x- intercepts
7 (i)	8 < 3x - 2 < 11	M1 2 equations or inequal	
	10 < 3x < 13	all 3 terms resulting i A1 10 and 13 seen	$u < \kappa x < D$
	$\frac{10}{3} < x < \frac{13}{3}$	A1	
		3	
(ii)	$x(x+2) \ge 0$	M1 Correct method to sol	ve a quadratic
		A1 0, -2M1 Correct method to sol	ve inequality
	$x \ge 0, x \le -2$	A1	ve mequanty

8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B 1	One term correct
			B1	Fully correct
			2	
	(ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
		3 - 2k + 1 = 0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
		<i>k</i> = 2	A1√ 3	
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2 y}{dx^2}$ and looks at sign
		When $x = 1$, $\frac{d^2 y}{dr^2} > 0$: min pt	A1	States minimum CWO
		u	2	
	(iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{dy}{dx} = 0$
		(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
		$x = \frac{1}{3}, x = 1$		
		$x = \frac{1}{3}$	A1	WWW at any stage
		3	3	

9	(i)		B1	$(x-2)^2$ and $(y-1)^2$ seen
		$(x-2)^2 + (y-1)^2 = 100$	B1	$(x\pm 2)^2 + (y\pm 1)^2 = 100$
		$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
			3	
	(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
		$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in <i>k</i> (or <i>y</i>) obtained
		$k = 1 + \sqrt{91}$	A1 3	cao
	(iii)	distance from (-3, 9) to (2, 1)		
		$=\sqrt{(23)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
		$=\sqrt{25+64}$	A1	
		$=\sqrt{89}$		
		$\sqrt{89} < 10$ so point is inside	B1	compares their distance with 10 and makes consistent conclusion
			3	
	(iv)	gradient of radius $=\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
		$=\frac{4}{3}$	A1	oe
		gradient of tangent $= -\frac{3}{4}$	B 1√	oe
		$y-9 = -\frac{3}{4}(x-8)$	M1	correct equation of straight line through (8, 9),
		4		any non-zero gradient
		$y-9 = -\frac{3}{4}x + 6$		
		$y = -\frac{3}{4}x + 15$	A1	oe 3 term equation
		4	5	-
			3	

10 (1)	$2(x^2 - 3x) + 11$	D1	
10 (i)		B1	p=2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B 1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	B 1√	
		B1√ 2	
(iii)	36-4×2×11	M1	uses $b^2 - 4ac$
()	= -52	A1	
		2	
(iv)	0 real roots	B1 1	сао
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1d	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1