Mark Scheme 4721 June 2007

4721

1	$(4x^2 + 20x + 25) - (x^2 - 6x + 9)$ = $3x^2 + 26x + 16$	M1 A1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$ One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: (2x + 5 + (x - 3))(2x + 5 - (x - 3)) = $(3x + 2)(x + 8)$ = $3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)	N	B1		Excellent curve for $\frac{1}{x}$ in either
		B1	2	quadrant Excellent curve for $\frac{1}{x}$ in other quadrant
(ii)	\			SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction or scale factor ½ in x direction	B1 B1	2	
	of soule factor /2 iii x another		5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5}$ \times $\sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90}$ \times $\sqrt{2}$	M1		
	$=6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	$= 15\sqrt{5}$	A1	3	cao
			5	

4721

4 (i)	$(-4)^2 - 4 \times k \times k$	M1		Uses $b^2 - 4ac$ (involving k)
	$= 16 - 4k^2$	A1	2	$16-4k^2$
(ii)	$16 - 4k^2 = 0$	M1		Attempts $b^2 - 4ac = 0$ (involving k) or
	$k^2 = 4$			attempts to complete square (involving k)
	k = 2	B1		, Ay
	or $k = -2$	B1	3	
F (:)	Langeth 00 Ov	N 1 4	5	Everyonian for longth of analysis in
5 (i)	Length = 20 – 2x	M1		Expression for length of enclosure in terms of x
		A1	2	Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$ = $20x - 2x^2$			AG
	- 20X ZX			
(ii)	$\frac{dA}{dx} = 20 - 4x$	M1		Differentiates area expression
	dx For max, $20 - 4x = 0$			
	·			dy = 0
	x = 5 only Area = 50	M1 A1		Uses $\frac{dy}{dx} = 0$
	Area = 50	A1	4	
			6	
6	Let $y = (x + 2)^2$	B1		Substitute for $(x + 2)^2$ to get
	$y^2 + 5y - 6 = 0$			$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0	M1		Correct method to find roots
	y = -6 or y = 1	A1		Both values for y correct
		M1		Attempt to work out x
	$(x + 2)^2 = 1$	A1	•	One correct value
	x = -1 or $x = -3$	A1	6	Second correct value and no extra real values
7 (a)	$f(x) = x + 3x^{1}$	M1	6	Attempt to differentiate
(5.)				
	$f'(x) = 1 - 3x^2$	A1		First term correct
		A1		x ² soi www
		A1	4	Fully correct answer
(b)	$\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}$	M1		Use of differentiation to find gradient
	$\int dx - \frac{\pi}{2}$	B1		$\frac{5}{2}x^{c}$
		B1		$\frac{3}{kx^{\frac{3}{2}}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2} \sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	$\begin{array}{c} dx & 2 \\ = 20 \end{array}$	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.

4721

8 (i)	$(x + 4)^2 - 16 + 15$	B1	a = 4
0 (1)	$\begin{vmatrix} (x + 4) - 10 + 15 \\ = (x + 4)^2 - 1 \end{vmatrix}$		
	= (x + 4) - 1	M1	15 – their a ²
		A1 3	cao in required form
(ii)	(-4, -1)	B1 ft	Correct x coordinate
(11)	(-4, -1)	B1 ft 2	Correct y coordinate
		DIKZ	Correct y coordinate
		M1	Correct method to find roots
		A1	-5, -3
		/ ()	
(iii)	$x^2 + 8x + 15 > 0$	M1	Correct method to solve quadratic
()	(x + 5)(x + 3) > 0		inequality eg +ve quadratic graph
			moquanty og tvo quautano grapti
	x < -5, x > -3	A1 4	x < -5, x > -3
	,		(not wrapped, strict inequalities, no
		9	'and')
9 (i)	$(x-3)^2 - 9 + y^2 - k = 0$	B1	$(x-3)^2$ soi
	$(x-3)^2 + y^2 = 9 + k$	B1	Correct centre
	Centre (3, 0)		
	$9 + k = 4^2$	M1	Correct value for k (may be
	k = 7	A1 4	embedded)
			Alternative method using expanded
			form:
			Centre $(-g, -f)$ M1
			Centre (3, 0) A1
			$4 = \sqrt{f^2 + g^2 - (-k)}$ M1
			k = 7 A1
(ii)	$(3-3)^2 + y^2 = 16$	M1	Attempt to substitute x = 3 into
	$y^2 = 16$		original equation or their equation
	y = 4	A1	$y = 4$ (do not allow ± 4)
			, , , , , , , , , , , , , , , , , , , ,
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	Correct method to find line length
	V = / (= -/)		using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$
	$=4\sqrt{2}$	A1 5	cao
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
(,	•		
	y - 0 = m(x + 1) or $y - 4 = m$	M1	Attempts equation of straight line
	(x-3)		through their A or B with their gradient
		A1 3	Correct equation in any form with
	y = x + 1		simplified constants
		12	

10 (i)	(3x + 1)(x - 5) = 0 $x = \frac{-1}{2}$ or $x = 5$	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
	3		SR B1 for x = 5 spotted www
(ii)	\ [/	B1	Positive quadratic (must be reasonably symmetrical)
		B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 $x = 3$	M1* A1	Equating their gradient expression to 4
	On curve, when $x = 3$, $y = -20$	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3x^2 - 14x - 5 = 4x + c$		
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0 \text{ has one solution}$	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32