PMT

Mark Scheme 4721 June 2005

1	$x^2 - 6x - 40 \ge 0$	M1	Correct method to find roots
	$ x - 0x - 40 \ge 0 (x+4)(x-10) \ge 0 $		
	$(x+4)(x-10) \ge 0$		
		A1	-4, 10
	-5 -10 -5 -0		
	-30	M1	Correct method to solve quadratic
	-50 -60		inequality e.g. +ve quadratic graph
	$x \leq -4, x \geq 10$	A1 4	$x \leq -4, x \geq 10$
		4	(not wrapped, not strict inequalities, no
2(i)	EITHER		'and')
2(1)	$3(x^2+4x)+7$		
	$3(x+2)^2-12+7$		
	$3(x+2)^2-5$		
	OR		
	$3(x^2+2ax+a^2)+b$		
	$3x^2 + 6ax + 3a^2 + b$		
	6a = 12	M1	$a = \frac{12}{6 \text{ or } 2}$
	a=2		6 or 2 $a = 2$
	$3a^2 + b = 7$	A1	
	b = -5	M1	$7 - a^2$ or $7 - 3a^2$ or $\frac{7}{3} - a^2$ (their a)
		A1 4	b = -5
(ii)	x = -2	B1 ft 1	x = -2
3 (i)		5 B1 1	Correct sketch showing point of inflection
	Ť×/		at origin
	×		
	- 1		
(ii)	Reflection in <i>x</i> -axis or reflection in <i>y</i> -axis	B1	Reflection
		B1 2	In <i>x</i> -axis or <i>y</i> =0 or <i>y</i> -axis or <i>x</i> =0
(iii)	$y = \left(x - p\right)^3$	M1	$y = \left(x \pm p\right)^3$
		A1 2	$y = (x - p)^{3}$
		5	y = (x + y)

4	$k = x^3$	*M1	Attempt a substitution to obtain a
	$k^2 + 26k - 27 = 0$	A1	quadratic $k^2 + 26k - 27 = 0$
	k = -27, 1	A1	-27, 1
		DM1	Attempt cube root
	x = -3, 1	A1 5	x = -3, 1 (no extras)
			(SR: <i>x</i> = 1 seen www B1
			x = -3 seen www B1)
		5	
5 (a)	$2x^{\frac{2}{3}} \times 3x^{-1}$	M1	Adds indices
	$=6x^{\frac{-1}{3}}$	A1 2	$6x^{\frac{-1}{3}}$
	$2^{40} \times 4^{30}$		
(b)	$2^{40} \times 4^{40}$ = $2^{40} \times 2^{60}$	M1	2 ⁶⁰ or 4 ²⁰
	$=2^{100}$	A1 2	2 ¹⁰⁰
(c)	$26(4+\sqrt{3})$	M1	Multiply top and bottom by
(0)	$\frac{(1-\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$		$(4+\sqrt{3})$ or $(-4-\sqrt{3})$
	$\frac{26(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$ $=8+2\sqrt{3}$	A1	$\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)=13$
		A1 3	$8+2\sqrt{3}$
6 (i)	$(x^2+2x+1)(3x-4)$	M1	Expand 2 brackets to give an expression
	$(x^{3} + 2x^{2} - 5x - 4)$		of the form $ax^2 + bx + c$ ($a \neq 0, b \neq 0, c \neq 0$) and attempt to multiply by third
	= 3x + 2x - 3x - 4		bracket
			$3x^3 + 2x^2 - 5x - 4$
		A1 A1 3	3 correct simplified terms Completely correct
(ii)	$9x^2 + 4x - 5$		
			$9x^2 + 4x - 5$
		B1 ft B1 ft 2	1 term correct Completely correct (3 terms)
(iii)	18x + 4	M1 A1 ft 2	Attempt to differentiate their (ii)
			18x + 4 (2 terms)
			(SR (ii) $3ax^2 + 2bx + c$ B1 (iii) $6ax + 2b$ B1)
		7	
		1	

7 (i)	$b^2 - 4ac$	M1	Uses $b^2 - 4ac$
	(a) $36 - 9 \times 4 = 0$	A 4	1 correct
	(b) 100 – 48 = 52	A1	T correct
	(c) $4 - 20 = -16$	A1 3	3 correct
	(6) 4 20 - 10		SR All 3 values correct but $$ used B1
(ii)			
(11)	(a) Fig 3	B1	1 correct matching
	(b) Fig 2	B1	3 correct matchings
	(c) Fig 5		
	 (a) 1 root, touches x-axis once, line of symmetry x= -3 or root x =-3 	B1	1 correct comment relating roots to
			touching/crossing <i>x</i> -axis or about line of symmetry or vertex o.e. for one graph
	(b) 2 roots, meets x-axis twice, line of symmetry x=5	B1 4	2 further correct comments about roots,
	(c) No real roots, does not meet <i>x</i> -		line of symmetry o.e. for the other 2
	axis		graphs
8 (i)	Circle, centre (0, 0), radius 5	7 B1	Circle centre (0, 0)
		B1 2	Radius 5
(ii)	y = 5 - 2x		
	$x^{2} + (5 - 2x)^{2} = 25$	M1	Attempt to solve equations simultaneously
	$5x^2 - 20x = 0$		
		*M1	Substitute for <i>x/y</i> or correct attempt at elimination of one variable (NOT for 2
	OR		linear equations)
	$x = \frac{5 - y}{2}$	DM1	Obtain quadratic $ax^2 + bx + c = 0$
	$(5-y)^2$ 2.25	DIVIT	$(a \neq 0, b \neq 0)$
	$\frac{(5-y)^2}{4} + y^2 = 25$		
	$y^2 - 2y - 15 = 0$	M1	Correct method to solve quadratic
	x = 0, 4	A1	x = 0, 4 or y = 5, -3
	y = 5, -3	A1 6	
			SR one correct pair www B1
			<u>SR</u> If solution by graphical methods:
			If solution by graphical methods: Drawing circle, centre (0,0) radius 5 B1
			Drawing line B1 Looking for intersection M1
			(0,5) correct A1
		8	(4, -3) correct A2
	•		

9 (i)	$y = \frac{4}{3}x + \frac{5}{3}$		
(;;)	gradient = $\frac{4}{3}$ gradient of	B1 1	$\frac{4}{3}$ or 1.33 or better
(ii)	$\perp^r = -\frac{3}{4}$	B1 ft	$-\frac{3}{4}$ seen or implied
	$y-2 = -\frac{3}{4}(x-1)$ 4y+3x=11	M1	Attempts equation of straight line through (1, 2) with any gradient
	4y + 3x = 11	A1	$y-2 = -\frac{3}{4}(x-1)$
		A1 4	3x + 4y - 11 = 0 (not aef)
(iii)	$P\left(-\frac{5}{4},0\right)$	B1	$\left(-\frac{5}{4},0\right)$ seen or implied
	$Q\left(0,\frac{11}{4}\right)$	B1 ft	$\left(0,\frac{11}{4}\right)$ seen or implied (from a straight
(1-)	$\left(-\frac{5}{8},\frac{11}{8}\right)$	B1 ft 3	line equation in (ii)) $\left(-\frac{5}{8},\frac{11}{8}\right)$ aef
(iv)	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$ $\frac{\sqrt{146}}{\sqrt{146}}$	M1	Correct method to find line length using Pythagoras' theorem
	$\frac{\sqrt{146}}{4}$	A1	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$
		A1 3 11	$\frac{\sqrt{146}}{4}$

10 (i)	1		$x^2 - 9$
10 (1)	$\frac{dy}{dt} = x^2 - 9$	B1	x - 9 1 term correct
	dx	B1 2	
		2. 2	
(ii)	$x^2 - 9 = 0$	*M1	uses $\frac{dy}{dx} = 0$
	x = 3, -3		
		A1	x = 3, -3
	y = -18, 18	A1 3	y = -18, 18
			(1 correct pair A1 A0)
	d^2	DM1	Looks at sign of $\frac{d^2 y}{dx^2}$ or other
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2x$	DIVIT	$\frac{1}{dx^2}$ or other
			correct method
	$x = 3 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6$	A1	$x = 3 \min \text{imum}$
	$dx^2 = 0$		x = 3 min mum
	$d^2 v$		
	$x = -3 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6$	A1 3	$x = -3 \max \text{imum}$
	d <i>x</i>		(N.B. If no method shown but min and
			max correctly stated, award all 3 marks
			unless earlier incorrect working)
(iv)	gradient of	B1	Gradient = – 8
(1V)	0	M1	$x^2 - 9 = -8$
	24x + 3y + 2 = 0 is -8		x 0 - 0
	$x^2 - 9 = -8$		
	$x = \pm 1$	M1	one of their x values substituted in both
			line <u>and</u> curve
	For line	M1	second x value substituted in both line
	$x = 1, y = -8\frac{2}{3}$		and curve or justification that first point is
	$x = 1, y = -8\frac{3}{3}$		the correct one
	1	A1 5	$p = 1, q = -8\frac{2}{3}$ seen
	$x = -1, y = 7\frac{1}{3}$	AT 5	p = 1, q = -6 - 3 seen
	For curve		Alternative methods:
			Either:
	$x = 1, y = -8\frac{2}{3}$		Solve equations for curve and line simultaneously to get one solution
	3		(either $x = 1$ or $x = -2$) M1
	$ x-1 = 8^2$		Gradient of line = -8 B1
	$x = -1, y = 8\frac{2}{3}$		Substitution of one x value into their
			gradient formula and check for -8 M1
	$\therefore p=1, q=-8\frac{2}{3}$		Substitution of other <i>x</i> value into
	5		gradient formula and check for -8 or justification as above M1
			Correct <i>q</i> value A1
			<u>Or:</u>
			Solve equations for curve and line
			simultaneously to get one solution M1
			Factorise to (x-1) ² (x+2) B1 State that a double root implies
			a tangent at $x = 1$ M2
		13	Correct value for y A1
		13	