Mark Scheme 4721 January 2007

1	$\frac{5}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ $= \frac{5(2 + \sqrt{3})}{4 - 3}$ $= 10 + 5\sqrt{3}$	M1 A1 A1	3 3	Multiply top and bottom by $\pm (2 + \sqrt{3})$ $(2 + \sqrt{3})(2 - \sqrt{3}) = 1 \text{ (may be implied)}$ $10 + 5\sqrt{3}$
2(i) (ii)	$\frac{1}{2} \times 2^4$ $= 8$	B1 M1 M1 A1	1 3 4	$2^{-1} = \frac{1}{2} \text{ or } 32^{\frac{1}{5}} = 2 \text{ or } 2^{5} = 32 \text{ soi}$ $32^{\frac{4}{5}} = 2^{4} \text{ or } 16 \text{ seen or implied}$
3(i)	$3x-15 \le 24$ $3x \le 39$ $x \le 13$ or $x-5 \le 8$ M1 $x \le 13$ A1	M1	2	Attempt to simplify expression by multiplying out brackets $x \le 13$ Attempt to simplify expression by dividing through by 3
(ii)	$5x^2 > 80$ $x^2 > 16$ x > 4 or $x < -4$	M1 B1 A1	3 5	Attempt to rearrange inequality or equation to combine the constant terms $x > 4$ fully correct, not wrapped, not 'and' SR B1 for $x \ge 4$, $x \le -4$

Mark Scheme 4721/01 January 2007

	1		
4	Let $y = x^{\frac{1}{3}}$	*M1	Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	$y^2 + 3y - 10 = 0$	53.64	
	(y-2)(y+5) = 0	DM1	Correct attempt to solve quadratic
	y = 2, y = -5	A1	Both values correct
	$x = 2^3, x = (-5)^3$	DM1	Attempt cube
	x = 8, x = -125	A1 ft 5	Both answers correctly followed through
		5	SR B2 $x = 8$ from T & I
5 (i)		M1	Reflection in either axis
		A1 2	Correct reflection in x axis
(ii)	(1,3)	B1 B1 2	Correct x coordinate Correct y coordinate
			SR B1 for (3, 1)
(iii)	Translation 2 units in negative x direction	B1 B1 2	
		6	
6 (i)	$2(x^2-12x+40)$	B1	a=2
	$= 2[(x-6)^2 - 36 + 40]$	B1	b = 6
	$= 2[(x-6)^2 - 36 + 40]$ $= 2[(x-6)^2 + 4]$	M1	$80 - 2b^2$ or $40 - b^2$ or $80 - b^2$ or $40 - 2b^2$
	$= 2(x-6)^{2} + 4$ $= 2(x-6)^{2} + 8$		(their b)
	-2(x-0) +0	A1 4	c = 8
(ii)	x = 6	B1 ft 1	
(iii)	y = 8	B1 ft 1	
		6	

Mark Scheme 4721/01 January 2007

7(:)		ı	<u> </u>
7(i)	$\frac{dy}{dx} = 5$	B1 1	
(ii)	$y = 2x^{-2}$	B1	x^{-2} soi
	$\frac{dy}{dx} = -4x^{-3}$	B1	$-4x^{c}$ kx^{-3}
	ax	B1 3	kx^{-3}
(iii)	$y = 10x^2 - 14x + 5x - 7$	M1	Expand the brackets to give an expression
	$y = 10x^2 - 9x - 7$	A1	of form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$ Completely correct (allow 2 <i>x</i> -terms)
	,		1 term correctly differentiated
	$\frac{dy}{dx} = 20x - 9$	B1 ft B1 ft 4	Completely correct (2 terms)
		8	
8 (i)	$\frac{dy}{dx} = 9 - 6x - 3x^2$	*M1	Attempt to differentiate y or –y (at least one
	dx	A1	correct term) 3 correct terms
	At stationary points, $9 - 6x - 3x^2 = 0$	M1	Use of $\frac{dy}{dx} = 0$ (for y or -y)
	3(3+x)(1-x) = 0 x = -3 or x = 1	DM1 A1	Correct method to solve 3 term quadratic $x = -3$, 1
	y = 0, 32	A1ft 6	y = 0, 32 (1 correct pair www A1 A0)
(ii)	$\frac{d^2y}{dx^2} = -6x - 6$	M1	Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly
			from $k \frac{dy}{dx}$, or other correct method
	When $x = -3$, $\frac{d^2 y}{dx^2} > 0$ When $x = 1$, $\frac{d^2 y}{dx^2} < 0$	A1	x = -3 minimum
	When $x = 1$, $\frac{d^2y}{dx^2} < 0$	A1 3	x = 1 maximum
(iii)	-3 < <i>x</i> < 1	M1	Uses the x values of both turning points in
		A1 2	inequality/inequalities Correct inequality or inequalities. Allow ≤
		11	
		l .	

9 (i)	Gradient = 4	B1	Gradient of 4 soi
	y-7=4(x-2)	M1	Attempts equation of straight line through (2, 7) with any gradient
	y = 4x - 1	A1 3	(=, /)
(ii)	$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $= \sqrt{(2 - 1)^2 + (7 - 2)^2}$	M1	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	A1	$\sqrt{3^2+9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB = 3	B1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$y - \frac{5}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	Attempts equation of straight line through their midpoint with any non-zero gradient
	x + 3y - 8 = 0	A1	$y - \frac{5}{2} = \frac{-1}{3} (x - \frac{1}{2})$
		A1 6	x + 3y - 8 = 0
		12	

10 (i)	Centre (-1, 2) $(x+1)^2 - 1 + (y-2)^2 - 4 - 8 = 0$	B1 M1		Correct centre Attempt at completing the square
	$(x+1)^2 + (y-2)^2 = 13$ Radius $\sqrt{13}$	A1	3	Correct radius
				Alternative method:
				Centre $(-g, -f)$ is $(-1, 2)$ B1
				$g^{2} + f^{2} - c$ Radius = $\sqrt{13}$ M1 A1
				Kaulus – VIS AI
(ii)	$(2)^{2} + (k-2)^{2} = 13$ $(k-2)^{2} = 9$	M1		Attempt to substitute $x = -3$ into circle equation
	$k-2=\pm 3$	M1	2	Correct method to solve quadratic
	k = -1	A1	3	k = -1 (negative value chosen)
(iii)	EITHER			
	y = 6 - x	M1		Attempt to solve equations simultaneously Substitute into their circle equation for x/y
	$(x+1)^2 + (6-x-2)^2 = 13$ (x+1) ² + (4-x) ² = 13	M1		or attempt to get an equation in 1 variable
	$x^{2} + 2x + 1 + 16 - 8x + x^{2} = 13$ $2x^{2} - 6x + 4 = 0$	A1		only Obtain correct 3 term quadratic
	2(x-1)(x-2) = 0	M1		Correct method to solve quadratic of form $ax^2 + bx + c = 0 \ (b \neq 0)$
	$\begin{vmatrix} x = 1, 2 \\ \therefore y = 5, 4 \end{vmatrix}$	A1 A1	6	Both x values correct Both y values correct
	, - 5 , 4	711	O	<u>or</u>
				one correct pair of values www B1 second correct pair of values B1
	$ \begin{array}{l} OR \\ x = 6 - y \end{array} $			•
	$(6 - y + 1)^2 + (y - 2)^2 = 13$			
	$(7-y)^{2} + (y-2)^{2} = 13$ $49 - 14y + y^{2} + y^{2} - 4y + 4 = 13$			
	$2y^{2} - 18y + 40 = 0$ $2(y - 4)(y - 5) = 0$			
	y=4,5			SR
	$\therefore x = 2, 1$			T&I M1 A1 One correct x (or y) value A1 Correct associated coordinate
				AT Correct associated coordinate
			12	