Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Monday 10 January 2011 – Morning

Time: 1 hour 30 minutes

Materials required for examination Items included with question papers Mathematical Formulae (Pink)

Calculators may NOT be used in this examination.

Exam	iner's use	e only
Team L	eader's u	ise only

n L	eader's u	ise only

Leave

Question

1

2

3

4

5

6

7

8

9

10

11

Instructions	to	Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

Edexcel Limited copyright policy. ©2011 Edexcel Limited

35402 W850/R6663/57570 5/5/3/2/

Turn over

Total

advancing learning, changing lives

Leave

(a) Find the value of $16^{-\frac{1}{4}}$	(2)
(b) Simplify $x(2x^{-\frac{1}{4}})^4$	(2)
	(Total 4 marks)

2. Find		Lea blar
$\int (12x^5 - 3x^2 + 4x^{\frac{1}{3}}) \mathrm{d}x$		
giving each term in its simplest form.	(5)	
		Q2
	(Total 5 marks)	

3

5. Simplify	
$\frac{5-2\sqrt{3}}{\sqrt{3}-1}$	
√ <i>S</i> − 1	
giving your answer in the form $p+q\sqrt{3}$, where p and q are rational numbers.	
	(4)

		Leav
		blan
4. A sequence $a_1, a_2, a_3,$ is defined by		
$a_1 = 2$		
$a_{n+1} = 3a_n - c$		
where c is a constant.		
(a) Find an expression for a_2 in terms of c .		
	(1)	
Given that $\sum_{i=1}^{3} a_i = 0$		
i=1		
(b) find the value of <i>c</i> .		
	(4)	

PMT

Leave blank

5.

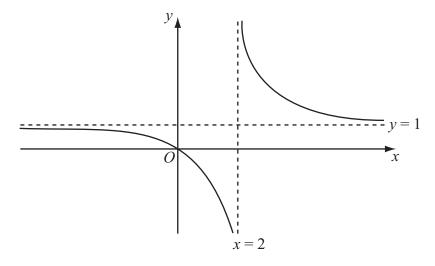


Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x) where

$$f(x) = \frac{x}{x-2}, \qquad x \neq 2$$

The curve passes through the origin and has two asymptotes, with equations y = 1 and x = 2, as shown in Figure 1.

(a) In the space below, sketch the curve with equation y = f(x-1) and state the equations of the asymptotes of this curve.

(3)

(b) Find the coordinates of the points where the curve with equation y = f(x-1) crosses the coordinate axes.

(4)

Leave

terms of the sequence is 162. (a) Show that $10a+45d=162$		An arithmetic sequence has first term a and common difference d . The sum of the first 10
Given also that the sixth term of the sequence is 17, (b) write down a second equation in a and d, (c) find the value of a and the value of d.		
Given also that the sixth term of the sequence is 17, (b) write down a second equation in a and d, (c) find the value of a and the value of d.		
(b) write down a second equation in a and d,(c) find the value of a and the value of d.		(2)
(c) find the value of a and the value of d.		Given also that the sixth term of the sequence is 17,
(c) find the value of a and the value of d.		
		(1)
		(4)
	_	
	_	
	_	
	_	
	_	
	_	

PMT

Given that				
	$f'(x) = 12x^2 - 8x + 1$			
find $f(x)$.				
		(5)		

The equation $x^2 + (k-3)x + (3-2k) = 0$, where k is a constant, has two roots.	distinct real
(a) Show that <i>k</i> satisfies	
$k^2 + 2k - 3 > 0$	
	(3)
(b) Find the set of possible values of k .	(4)
	(4)

		Leave blank
9.	The line L_1 has equation $2y-3x-k=0$, where k is a constant.	
	Given that the point A (1,4) lies on L_1 , find	
	(a) the value of k , (1)	
	(b) the gradient of L_1 . (2)	
	The line L_2 passes through A and is perpendicular to L_1 .	
	(c) Find an equation of L_2 giving your answer in the form $ax + by + c = 0$, where a , b and c are integers. (4)	
	The line L_2 crosses the x-axis at the point B.	
	(d) Find the coordinates of B . (2)	
	(e) Find the exact length of AB. (2)	

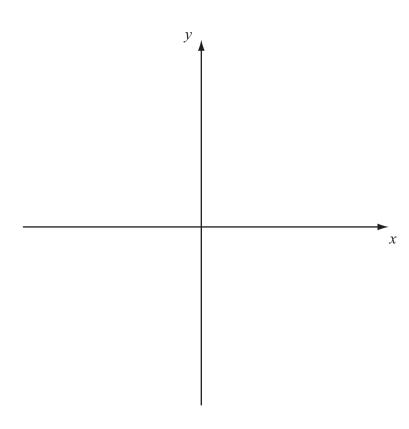
Leave

Question 9 continued	1

Leave blank

10. (a) On the axes below, sketch the graphs of

(i)
$$y = x(x+2)(3-x)$$


(ii)
$$y = -\frac{2}{x}$$

showing clearly the coordinates of all the points where the curves cross the coordinate axes.

(6)

(b) Using your sketch state, giving a reason, the number of real solutions to the equation

$$x(x+2)(3-x) + \frac{2}{x} = 0$$
 (2)

Leave blank

11. The curve C has equation

$$y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \qquad x > 0$$

(a) Find $\frac{dy}{dx}$.

(4)

(b) Show that the point P(4,-8) lies on C.

(2)

(c) Find an equation of the normal to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(6)

22

Question 11 continued	Leave blank
	Q11
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

PMT