

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics

Core Mathematics 1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 2017 General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the **mark scheme to a candidate's response, the** team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- **____ or d... The second mark is depe**ndent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2}+bx+c) = (x+p)(x+q)$$
, where $|pq| = |c|$, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Sch	ieme	Marks		
1.	$\int \left(2x^5 - \frac{1}{2}\right)^2$	$\int \left(2x^{5} - \frac{1}{4}x^{-3} - 5 \right) dx$			
	Ignore any spurious in	Ignore any spurious integral signs throughout			
		Raises any of their powers by 1.			
		E.g. $x^5 \rightarrow x^6$ or $x^{-3} \rightarrow x^{-2}$ or $k \rightarrow kx$			
	$x^n \rightarrow x^{n+1}$	or $x^{\text{their}n} \rightarrow x^{\text{their}n+1}$. Allow the powers	M1		
		to be un-simplified e.g. $x^5 \rightarrow x^{5+1}$ or			
		$x^{-3} \to x^{-3+1}$ or $kx^0 \to kx^{0+1}$.			
	$2 \times \frac{x^{5+1}}{6}$ or $-\frac{1}{4} \times \frac{x^{-3+1}}{-2}$	Any one of the first two terms correct simplified or un-simplified .	A1		
		Any two correct simplified terms			
	1 1	Any two correct <u>simplified</u> terms. Accept $+\frac{1}{8x^2}$ for $+\frac{1}{8}x^{-2}$ but not x^1			
	Two of: $\frac{1}{3}x^6$, $\frac{1}{8}x^{-2}$, $-5x$	for x. Accept 0.125 for $\frac{1}{8}$ but $\frac{1}{3}$	A1		
		would clearly need to be identified			
		as 0.3 recurring.			
		All correct and simplified and			
	$\frac{1}{3}x^6 + \frac{1}{8}x^{-2} - 5x + c$	including $+ c$ all on one line.	A1		
	$\frac{1}{3}x + \frac{1}{8}x - 3x + c$	Accept $+\frac{1}{8x^2}$ for $+\frac{1}{8}x^{-2}$ but not x^1			
		for <i>x</i> . Apply isw here.			
			(4 marks)		

Question Number	Scheme	Marks
2.	$y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4 = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} + 4$	
	$x^{n} \rightarrow x^{n-1}$ Decreases any power by 1. Either $x^{\frac{1}{2}} \rightarrow x^{-\frac{1}{2}}$ or $x^{-\frac{1}{2}} \rightarrow x^{-\frac{3}{2}}$ or $4 \rightarrow 0$ or $x^{\text{their}n} \rightarrow x^{\text{their}n-1}$ for fractional n .	M1
	$\begin{pmatrix} \frac{dy}{dx} = \\ \frac{1}{2}x^{-\frac{1}{2}} + 4 \times -\frac{1}{2}x^{-\frac{3}{2}} \\ \begin{pmatrix} = \frac{1}{2}x^{-\frac{1}{2}} - 2x^{-\frac{3}{2}} \end{pmatrix}$ Correct derivative, simplified or un- simplified including indices. E.g. allow $\frac{1}{2} - 1$ for $-\frac{1}{2}$ and allow $-\frac{1}{2} - 1$ for $-\frac{3}{2}$	A1
	$x = 8 \Rightarrow \frac{dy}{dx} = \frac{1}{2}8^{-\frac{1}{2}} + 4 \times -\frac{1}{2}8^{-\frac{3}{2}}$ Attempts to substitute $x = 8$ into their 'changed' (even integrated) expression that is clearly not y. If they attempt algebraic manipulation of their dy/dx before substitution, this mark is still available.	M1
	$=\frac{1}{2\sqrt{8}} - \frac{2}{(\sqrt{8})^3} = \frac{1}{2\sqrt{8}} - \frac{2}{8\sqrt{8}} = \frac{1}{8\sqrt{2}} = \frac{1}{16}\sqrt{2}$ $=\frac{1}{2\sqrt{8}} - \frac{2}{(\sqrt{8})^3} = \frac{1}{2\sqrt{8}} - \frac{2}{8\sqrt{8}} = \frac{1}{8\sqrt{2}} = \frac{1}{16}\sqrt{2}$ $=\frac{1}{16}\sqrt{2} \text{ or } 8^{\frac{5}{2}} = 128\sqrt{2} \text{ or } 4\sqrt{8} = 8\sqrt{2}$ $=\frac{1}{16}\sqrt{2} \text{ or } \frac{\sqrt{2}}{16} \text{ and allow}$ $=\frac{1}{16}\sqrt{2} \text{ or } \frac{\sqrt{2}}{16} \text{ and allow}$ $=\frac{1}{16}\sqrt{2} \text{ or } \frac{1}{16} \text{ e.g.} \frac{32}{512}$	- B1A1
	· · ·	(5 marks)

Question Number	Sch	eme	Marks
3. (a)	$(a_2 =)2k$	2k only	B1
	$(a_3 =) \frac{k("2k"+1)}{"2k"}$	For substituting their a_2 into $a_3 = \frac{k(a_2 + 1)}{a_2}$ to find a_3 in terms of just k	M1
	$(a_3 =)\frac{2k+1}{2}$	$(a_3 =) \frac{2k+1}{2}$ or exact simplified equivalent such as $(a_3 =)k + \frac{1}{2}$ or $\frac{1}{2}(2k+1)$ but not $k + \frac{k}{2k}$ Must be seen in (a) but isw once a correct simplified answer is seen.	A1
		I ▲	(3)
		(b) for using an AP (or GP) sum is do form an AP (or GP).	
(b)	$\sum_{r=1}^{3} a_{r} = 10 \Longrightarrow 1 + "2k" + "\frac{2k+1}{2}" = 10$	Writes 1 + their a_2 + their $a_3 = 10$. E.g. $1+2k + \frac{2k^2 + k}{2k} = 10$. Must be a correct follow through equation in terms of k only.	M1
	$\Rightarrow 2+4k+2k+1=20 \Rightarrow k=$ or e.g. $\Rightarrow 6k^2 - 17k = 0 \Rightarrow k =$	Solves their equation in k which has come from the sum of 3 terms = 10, and reaches $k =$ Condone poor algebra but if a quadratic is obtained then the usual rules apply for solving – see General Principles. (Note that it does not need to be a 3- term quadratic in this case)	M1
	$(k=)\frac{17}{6}$	$k = \frac{17}{6}$ or exact equivalent e.g. $2\frac{5}{6}$ Do not allow $k = \frac{8.5}{3}$ or $k = \frac{17/2}{3}$ Ignore any reference to $k = 0$. Allow 2.83 recurring as long as the recurring is clearly indicated e.g. a dot over the 3.	A1
			(3)
			(6 marks)

Question Number	Sch	eme	Marks
4. (a)	$206 = 140 + (12 - 1) \times d \Longrightarrow d = \dots$	Uses $206 = 140 + (12-1) \times d$ and proceeds as far as $d =$	M1
	(d=)6	Correct answer only can score both marks.	A1
			(2)
(b)	$S_{12} = \frac{12}{2} (140 + 206) \text{ or}$ $S_{12} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6") \text{ or}$ $S_{11} = \frac{11}{2} (140 + 206 - "6") \text{ or}$ $S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times "6")$	Attempts $S_n = \frac{n}{2}(a+l)$ or $S_n = \frac{n}{2}(2a+(n-1)d)$ with $n = 12$, a = 140, l = 206, d = '6' WAY 1 Or Attempts $S_n = \frac{n}{2}(a+l)$ or $S_n = \frac{n}{2}(2a+(n-1)d)$ with $n = 11$, a = 140, l = 206 - '6', d = '6' WAY2 If they are using $S_n = \frac{n}{2}(2a+(n-1)d)$, the <i>n</i> must be used consistently.	M1
	S = 2076 WAY1 or S = 1870 WAY 2	Correct sum (may be implied)	A1
	$(52-12) \times 206 =$ or $(52-11) \times 206 =$	Attempts to find $(52-12) \times 206$ or $(52-11) \times 206$. Does not have to be consistent with their <i>n</i> used for the first Method mark.	M1
	Total = "2076"+"8240" = (WAY 1) or Total = "1870"+"8446" = (WAY 2)	Attempts to find the total by adding the sum to 12 terms with (52 - 12) lots of 206 or attempts to find the total by adding the sum to 11 terms with (52 - 11) lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks.	dd M1
	10316	cao	A1
			(5)
			(7 marks)

]	Listing	in (b)	:	
Week	к	1	2	3	4	5	6	7
Bicycle	es 2	140	146	152	158	164	170	176
Total	1 :	140	286	438	596	760	930	1106
								_
8	9	10	11	12	13		52	
182	188	194	200		206		206	_
1288	1476	1670	1870	2076	2282		10316	
140 an A1: S = Then f	= 2070 follow	6 or 18 the sci	370 heme					
М	S_{n}	$\frac{52}{2}$	(2×1-	40+(52	2-1)×	"6")=	15236	P with d Scores d = "6

(c)		Correct use of Pythagoras'	
	$PQ^{2} = (0-4)^{2} + (19-3)^{2}$	Theorem on 2 points of the form	M1
	PQ = (0-4) + (19-3)	$(0, p)$ and (q, r) where $q \neq 0$ and	M1 A1 A1
		$p \neq r$ with p , q and r numeric.	
		Correct un-simplified numerical	
		expression for PQ including the	
		square root. This must come from	
	$PQ = \sqrt{4^2 + 16^2}$	<u>a correct <i>P</i> and <i>Q</i>.</u> Allow e.g	A1
		$PQ = \sqrt{(0-4)^2 + (19-3)^2}$.	
		Allow $\pm \sqrt{(0-4)^2 + (19-3)^2}$	
	$PO = 4\sqrt{17}$	Cao and cso i.e. This must come	A 1
	$PQ = 4\sqrt{17}$	from a correct P and Q.	AI
	Note that it is possible to obtain t	he correct value for PQ from (-4,3) and	
	\mathbf{C}	-3) but the A marks in (c) can only be	
	awarded for t	he correct P and Q.	
			(3)
			(8 marks)

Question Number	Sch	eme	Marks	
6.(a)	Replaces 2^{2x+1} with $2^{2x} \times 2$ or	Uses the addition or power law of indices on 2^{2x} or 2^{2x+1} . E.g.		
	states $2^{2x+1} = 2^{2x} \times 2$	$2^{x} \times 2^{x} = 2^{2x} \text{ or } (2^{x})^{2} = 2^{2x} \text{ or }$	M1	
	or $(2x)^2 = 2^2x$	$2^{2x+1} = 2 \times 2^{2x}$ or $2^{x+0.5} = 2^x \times \sqrt{2}$		
	states $\left(2^{x}\right)^{2} = 2^{2x}$	or $2^{2x+1} = (2^{x+0.5})^2$.		
		Cso. Complete proof that includes explicit statements for the addition		
	$2^{2x+1} - 17 \times 2^{x} + 8 = 0$	and power law of indices on 2^{2x+1} with no errors. The equation needs		
	$2^{2n+2} - 1/\times 2^n + 8 = 0$ $\Rightarrow 2y^2 - 17y + 8 = 0*$	to be as printed including the "= 0".	A1*	
	$\rightarrow 2y = 17y + 6 = 0$	If they work backwards, they do not need to write down the printed		
		answer first but must end with the version in 2^x including '= 0'.		
	The following are exam	ples of acceptable proofs.		
	$2^{2x+1} = \left(2^{x+0.5}\right)^2 = \left(2^x\right)^2$	$\left(\sqrt{2}\right)^2 = \left(y\sqrt{2}\right)^2 = 2y^2$		
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 =$			
	$2y^2 = 2 \times 2^x \times 2^x = 2^{2x+1}$			
	$\Rightarrow 2^{2x+1} - 17(2^x) + 3$			
	$2y^2 - 17y + 8 = 0 \Longrightarrow 2($			
	$\Rightarrow 2 \times 2^{2x} - 17(2^x) + 8 = 0$	$0 \Longrightarrow 2^{2x+1} - 17\left(2^x\right) + 8 = 0$		
	$2^{2x+1} = 2 \times 2^{2x} \Longrightarrow 2 \times$	$<2^{2x}-17(2^{x})+8=0$		
		$\Rightarrow 2y^2 - 17y + 8 = 0$		
	Scores M1A0 as $2^{2x} = (2^x)^2$			
	-	I Case: 2^{2r+1} $(2^{r})^{2}$ 2		
	$2^{2x+1} = 2^1 \times \left(2^x\right)^2 $ with or without the multiplication			
		ion signs and with no subsequent power law scores M1A0		
	-	fficient working: $(2)^2$		
	($2^x\Big)^2 = 2y^2$		
	scores no marks as neither r	ule has been shown explicitly.	(2)	

(b)	$2y^2 - 17y + 8 = 0 \Longrightarrow (2)$		
	$2(2^x)^2 - 17(2^x) + 8 = 0 \Longrightarrow (2$		
	0 1	ther in terms of y or in terms of 2^x or solving a 3 term quadratic	M1
	Note that completing the squa		
	$\left(y\pm\frac{17}{4}\right)^2\pm c$	$\left(y \pm \frac{17}{4}\right)^2 \pm q \pm 4 = 0 \Longrightarrow y = \dots$	
	$(y=)\frac{1}{2},8$ or $(2^{x}=)\frac{1}{2},8$	Correct values	A1
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$	M1: Either finds one correct value of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Longrightarrow x = \log_2 k$ or $\frac{\log k}{\log 2}$ A1: $x = -1, 3$ only. Must be values	M1 A1
		of x.	(4)
			(6 marks)

Question Number	Sch	neme	Marks
7.(a)	$f'(4) = 30 + \frac{6 - 5 \times 4^2}{\sqrt{4}}$	Attempts to substitutes $x = 4$ into $f'(x) = 30 + \frac{6-5x^2}{\sqrt{x}}$ or their algebraically manipulated $f'(x)$	M1
	f'(4) = -7	Gradient = -7	A1
	$y - (-8) = "-7" \times (x - 4)$ or $y = "-7" x + c \Longrightarrow -8 = "-7" \times 4 + c$ $\Longrightarrow c = \dots$	Attempts an equation of a tangent using their numeric f'(4) which has come from substituting $x = 4$ into the given f'(x) or their algebraically manipulated f'(x) and $(4, -8)$ with the 4 and -8 correctly placed. If using $y = mx + c$, must reach as far as $c =$	M1
	y = -7x + 20	Cao. Allow $y = 20 - 7x$ and allow the "y =" to become "detached" but it must be present at some stage. E.g. $y =$ = -7x + 20	A1
			(4)
(b)	Allow the marks in (b) to score in		
	$\Rightarrow f(x) = 30x + 6\frac{x^{\frac{1}{2}}}{0.5} - 5\frac{x^{\frac{5}{2}}}{2.5}(+c)$	M1: $30 \rightarrow 30x$ or $\frac{6}{\sqrt{x}} \rightarrow \alpha x^{\frac{1}{2}}$ or $-\frac{5x^2}{\sqrt{x}} \rightarrow \beta x^{\frac{5}{2}}$ (these cases only) A1: Any 2 correct terms which can be simplified or un-simplified. This includes the powers – so allow $-\frac{1}{2} + 1$ for $\frac{1}{2}$ and allow $\frac{3}{2} + 1$ for $\frac{5}{2}$ (With or without + c) A1: All 3 terms correct which can be simplified or un-simplified. (With or without + c) ious integral signs	M1A1A1
-		Substitutes $x = 4$, $f(x) = -8$ into	
	$x = 4, f(x) = -8 \Longrightarrow$ $-8 = 120 + 24 - 64 + c \Longrightarrow c = \dots$	their $f(x)$ (not $f'(x)$) i.e. a changed f'(x) containing +c and rearranges to obtain a value or numerical expression for c.	M1
	$\Rightarrow (f(x) =)30x + 12x^{\frac{1}{2}} - 2x^{\frac{5}{2}} - 88$	Cao and cso (Allow \sqrt{x} for $x^{\frac{1}{2}}$ and e.g. $\sqrt{x^5}$ or $x^2\sqrt{x}$ for $x^{\frac{5}{2}}$). Isw here so as soon as you see the correct answer, award this mark. Note that the "f(x) =" is not needed.	A1
F			(5)
			(9 marks)

Question Number	Scheme	Marks
8.(a)	Gradient of $l_1 = \frac{4}{5}$ oeStates or implies that the gradient of $l_1 = \frac{4}{5}$. E.g. may be implied by a perpendicular gradient of $-\frac{5}{4}$. Do not award this mark for just 	B1
	Point $P = (5, 6)$ States or implies that P has coordinates $(5, 6)$. $y = 6$ is sufficient. May be seen on the diagram.	B1
	$-\frac{5}{4} = \frac{y - 6''}{x - 5}$ or $y - 6'' = -\frac{5}{4}(x - 5)$ or $y - 6'' = -\frac{5}{4}(x - 5)$ or $(5, 6'') \text{ and gradient of } -\frac{1}{\text{grad } l_1}.$ Unless $-\frac{5}{4}$ or $-\frac{1}{4}$ is being used as the gradient here, the gradient of l_1 clearly needs to have been identified and its negative reciprocal attempted to score this mark.	M1
	5x+4y-49=0 Accept any integer multiple of this equation including "= 0"	A1
		(4)

8(b)	Substitutes $y = 0$ into their l_2 to find			
0(0)	$y = 0 \Rightarrow 5x + 4(0) - 49 = 0 \Rightarrow x = \dots$ or $y = 0 \Rightarrow 5(0) = 4x + 10 \Rightarrow x = \dots$ bubshilds $y = 0$ into their l_2 to find a value for x or substitutes $y = 0$ into l_1 or their rearrangement of l_1 to find a value for x . This may be implied by a correct value on the diagram.			
	$y = 0 \Rightarrow 5x + 4(0) - 49 = 0 \Rightarrow x = \dots$ and $y = 0 \Rightarrow 5(0) = 4x + 10 \Rightarrow x = \dots$ Substitutes $y = 0$ into their l_2 to find a value for x and substitutes $y = 0$ into l_1 or their rearrangement of l_1 to find a value for x. This may be implied by correct values on the diagram.			
	(Note that at T , $x = 9.8$ and at S , $x = -2.5$)			
	Fully correct method using their values to find the area of triangle <i>SPT</i> with vertices at points of the form (5, "6"), (p, 0) and (q, 0) where $p \neq q$ Attempts to use integration should be sent to your team leader $\underline{Method 1:} \frac{1}{2}ST \times "6"$			
	$\frac{\frac{1}{2} \times ('9.8' - '-2.5') \times '6' = \dots}{\frac{\text{Method 2:}}{2} \frac{1}{2} SP \times PT}$ $\frac{1}{2} \times \sqrt{(5 - '-2.5')^2 + ('6')^2} \times \sqrt{('9.8' - 5)^2 + ('6')^2} = \dots$			
	$\left(= \frac{1}{2} \times \frac{3\sqrt{41}}{2} \times \frac{6\sqrt{41}}{5} \right)$ Note that if the method is correct but slips are made when simplifying any of the calculations, the method mark can still be awarded <u>Method 3:</u> 2 Triangles	ddM1		
	$\frac{1}{2} \times (5 + 2.5) \times 6' + \frac{1}{2} \times (9.8' - 5) \times 6' = \dots$	_		
	$\frac{\text{Method 4:}}{2 \begin{vmatrix} 5 & 9.8 & -2.5 & 5 \\ 6 & 0 & 0 & 6 \end{vmatrix}} = \frac{1}{2} (0+0-15) - (58.8+0+0) = \frac{1}{2} -73.8 = \dots$			
	(must see a correct calculation i.e. the middle expression for this determinant method)			
	<u>Method 5:</u> Trapezium + 2 triangles $\frac{1}{2} \times ('2.5') \times '2' + \frac{1}{2} ("2"+"6") \times 5 + \frac{1}{2} \times ("9.8"-5') \times '6' =$			
	$= 36.9$ $36.9 \operatorname{cso} \operatorname{oe} \operatorname{e.g} \frac{369}{10}, \ 36\frac{9}{10}, \ \frac{738}{20}$ but not e.g. $\frac{73.8}{2}$	A1		
	Note that the final mark is cso so beware of any errors that have fortuitously resulted in a correct area.			
		(4)		
		(8 marks)		

Question Number	Scheme	Marks
9.(a)(i)	B1: Straight line with negative gradient anywhere even with no axes.	B1
	(0, c) B1: Straight line with an intercept at (0, c) or just c marked on the positive y-axis provided the line passes through the positive y-axis. Allow (c, 0) as long as it is marked in the correct place. Allow (0, c) in the body of the script but in any ambiguity, the sketch has precedence. Ignore any intercepts with the x-axis.	B1
(a)(ii)	Either: For the shape of a $y = \frac{1}{x}$ curve in any position. It must have two branches and be asymptotic horizontally and vertically with no obvious "overlap" with the asymptotes, but otherwise be generous. The curve may bend away from the asymptote a little at the end. Sufficient curve must be seen to suggest the asymptotic behaviour, both vertically and horizontally and the branches must approach the same asymptote Or the equation $y = 5$ seen independently i.e. whether the sketch has an asymptote here or not. Do not allow $y \neq 5$ or $x = 5$.	В1
	B1: Fully correct graph and with a horizontal asymptote on the positive y-axis. The asymptote does not have to be drawn but the equation $y = 5$ must be seen. The shape needs to be reasonably accurate with the "ends" not bending away significantly from the asymptotes and the branches must approach the same asymptote. Ignore $x = 0$ given as an asymptote.	B1
	Allow sketches to be on the same axes.	

r		
(b)	$\frac{1}{x} + 5 = -3x + c \Rightarrow 1 + 5x = -3x^{2} + cx$ $\Rightarrow 3x^{2} + 5x - cx + 1 = 0$ x multiply by one side). A "="". At leas be multiplied slip. The '= subsequent correct work are still post	
	$b^{2} - 4ac = (5-c)^{2} - 4 \times 1 \times 3$ Attempts to the b and c from $a = \pm 3, b = could be as p formula or as or as \sqrt{b^{2} - 4} quadratic for$	use $b^2 - 4ac$ with their a , their equation where $\pm 5 \pm c$ and $c = \pm 1$. This part of the quadratic $a b^2 < 4ac$ or as $b^2 > 4ac$ $\overline{4ac}$ etc. If it is part of the mula only look for use of ere must be no x's. M1
	$(5-c)^{2} > 12*$ Completes p incorrect st ">" appearing b^{2} - 4ac > 0. 3x^{2} + 5x - c Completes p incorrect st ">" appearing b^{2} - 4ac > 0. 3x^{2} + 5x - c Completes p incorrect st ">" appearing b^{2} - 4ac > 0. 3x^{2} + 5x - c Completes p incorrect st ">" appearing b^{2} - 4ac > 0. 3x^{2} + 5x - c Completes p incorrect st ">" appearing b^{2} - 4ac > 0. 3x^{2} + 5x - c Completes p incorrect st ">" appearing completes p incorrect st ">" appearing completes p incorrect st "> " appearing incorrect st "> appearing	proof with no errors or catements and with the ng correctly before the c, which could be from Note that the statement x+1>0 or starting +5>-3x+c would be
	Note: A minimum for (b) could	l be,
	$\frac{1}{x} + 5 = -3x + c \Longrightarrow 3x^2 + 5x - cx + 1 (=$	
	$b^2 > 4ac \Longrightarrow (5-c)^2 > 12 (M1)$	A1)
	If $b^2 > 4ac$ is not seen then $4 \times 3 \times 1$ needs to be	e seen explicitly.
		(3)

(c)		M1: Attempts to find at least one	
(0)	$(5-c)^2 = 12 \Longrightarrow (c=)5 \pm \sqrt{12}$	critical value using the result in (b)	
	or	or by expanding and solving a 3TQ	
	$(5-c)^2 = 12 \Longrightarrow c^2 - 10c + 13 = 0$	(See General Principles) (the "= 0" may be implied)	M1A1
	$\Rightarrow (c=) \frac{-10 \pm \sqrt{(-10)^2 - 4 \times 13}}{2}$	A1: Correct critical values in any	
	$\Rightarrow (c =) - \frac{\sqrt{c}}{2}$	form. Note that $\sqrt{12}$ may be seen as	
		2\sqrt{3}.	
		Chooses outside region. The ' $0 <$ ' can be ignored for this	
		mark. So look for $c < \text{their } 5 - \sqrt{12}$,	
	$c < 5 - \sqrt{12}, c > 5 + \sqrt{12}$	$c > $ their $5 + \sqrt{12}$. This could be	M1
	$C < J = \sqrt{12} , C > J = \sqrt{12}$	scored from $5 + \sqrt{12} < c < 5 - \sqrt{12}$ or	
		$5 - \sqrt{12} > c > 5 + \sqrt{12}$. Evidence is	
		to be taken from their answers not	
		from a diagram.	
		Correct ranges including the $(0, c')$ as a subsymptotic range between the range be	
		0 < e.g. answer as shown or each region written separately or e.g.	
		$(0,5-\sqrt{12}), (5+\sqrt{12},\infty)$. The	
	$0 < c < 5 - \sqrt{12}, \ c > 5 + \sqrt{12}$	critical values may be un-simplified but must be at least	A1
		$\frac{10+\sqrt{48}}{2}, \frac{10-\sqrt{48}}{2}$. Note that	
		$0 < c < 5 - \sqrt{12}$ and $c > 5 + \sqrt{12}$ would score M1A0.	
	Allow the use of x rather than c in (c) but the final answer must be in terms of c.		
			(4)
			(11 marks)

(b) $f(x) = (2x-5)^{2}(x+3) = (4x^{2}-20x+25)(x+3) = 4x^{3}-8x^{2}-35x+75$ Attempts $f(x)$ as a cubic polynomial by attempting to square the first bracket and multiply by the linear bracket or expands $(2x-5)(x+3)$ and then multiplies by $2x-5$ Must be seen or used in (b) but may be done in part (a). Allow poor squaring e.g. $(2x-5)^{2} = 4x^{2} \pm 25$ $(f'(x) =)12x^{2} - 16x - 35*$ $M1: Reduces powers by 1 in all terms including any constant \rightarrow 0 A1: Correct proof. Withhold this mark if there have been any errors including missing brackets earlier e.g. M1A1*$	Question Number	Scheme		Marks
(ii) $c = \frac{5}{2} \text{ only}$ $c = \frac{5}{2} \text{ oe (and no other values). Do not award just from the diagram - must be stated as the value of c.}$ B1 (b) $f(x) = (2x-5)^{2}(x+3) = (4x^{2}-20x+25)(x+3) = 4x^{3}-8x^{2}-35x+75$ Attempts f(x) as a cubic polynomial by attempting to square the first bracket and multiply by the linear bracket or expands $(2x-5)(x+3)$ and then multiplies by $2x-5$ Must be seen or used in (b) but may be done in part (a). Allow poor squaring e.g. $(2x-5)^{2} = 4x^{2} \pm 25$ (f'(x) =) $12x^{2}-16x-35^{*}$ M1: Reduces powers by 1 in all terms including any constant $\rightarrow 0$ A1: Correct proof. Withhold this mark if there have been any errors including missing brackets earlier e.g.	10.(a)(i)	$k = \left(-5\right)^2 \times 3 = 75$	Accept as evidence $(-5)^2 \times 3$ with or without the bracket. If they expand f(x) to polynomial form here then they must then select their constant to score this mark . May be implied by sight of 75 on the diagram. A1: $k = 75$. Must clearly be identified as k . Allow this mark even from an incorrect or incomplete expansion as long as the constant $k = 75$ is obtained. Do not isw e.g. if 75 is seen	M1A1
(b) $f(x) = (2x-5)^{2}(x+3) = (4x^{2}-20x+25)(x+3) = 4x^{3}-8x^{2}-35x+75$ Attempts $f(x)$ as a cubic polynomial by attempting to square the first bracket and multiply by the linear bracket or expands $(2x-5)(x+3)$ and then multiplies by $2x-5$ Must be seen or used in (b) but may be done in part (a). Allow poor squaring e.g. $(2x-5)^{2} = 4x^{2} \pm 25$ $(f'(x) =)12x^{2} - 16x - 35*$ $M1: Reduces powers by 1 in all terms including any constant \rightarrow 0 A1: Correct proof. Withhold this mark if there have been any errors including missing brackets earlier e.g. M1A1*$	(ii)	$c = \frac{5}{2}$ only	$c = \frac{5}{2}$ oe (and no other values). Do not award just from the diagram –	
Attempts $f(x)$ as a cubic polynomial by attempting to square the first bracket and multiply by the linear bracket or expands $(2x-5)(x+3)$ and then multiplies by $2x-5$ M1Must be seen or used in (b) but may be done in part (a). Allow poor squaring e.g. $(2x-5)^2 = 4x^2 \pm 25$ M1M1: Reduces powers by 1 in all terms including any constant $\rightarrow 0$ M1A1*M1A1*	(b)	$(1 - 2)^2 (1 -$	$(2 + 25)(-+2) + (4^3 + 2^2) + 25 + 75$	(3)
$(f'(x) =)12x^2 - 16x - 35* \qquad \begin{array}{c} \text{including any constant} \to 0 \\ \text{A1: Correct proof. Withhold this} \\ \text{mark if there have been any errors} \\ \text{including missing brackets earlier e.g.} \end{array} M1A1*$	(17)	Attempts $f(x)$ as a cubic polynomial by attempting to square the first bracket and multiply by the linear bracket or expands $(2x-5)(x+3)$ and then multiplies by $2x-5$ Must be seen or used in (b) but may be done in part (a).		M1
	-	$(f'(x) =)12x^2 - 16x - 35*$	including any constant $\rightarrow 0$ A1: Correct proof. Withhold this mark if there have been any errors	M1A1*

(c)	$f'(3) = 12 \times 3^2 - 16 \times 3 - 35$	Substitutes $x = 3$ into their f'(x) or the given f'(x). Must be a changed function i.e. not into f(x).	M1
	$12x^2 - 16x - 35 = '25'$	Sets their $f'(x)$ or the given $f'(x) =$ their $f'(3)$ with a consistent f' . Dependent on the previous method mark.	d M1
	$12x^2 - 16x - 60 = 0$	$12x^{2}-16x-60 = 0 \text{ or equivalent } 3$ term quadratic e.g. $12x^{2}-16x = 60$. (A correct quadratic equation may be implied by later work). This is cso so must come from correct work – i.e. they must be using the <u>given</u> f'(x).	A1 cso
	$(x-3)(12x+20) = 0 \Longrightarrow x = \dots$	Solves 3 term quadratic by suitable method – see General Principles. Dependent on both previous method marks.	ddM1
	$x = -\frac{5}{3}$	$x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is clear i.e. a dot above the 6). This is cso and must come from correct work – i.e. they must be using the given f'(x).	A1 cso
			(5)
			(11 marks)
Alt (b) Product rule.	$f(x) = (2x-5)^{2}(x+3) \Rightarrow f'(x) = (2x-5)^{2} \times 1 + (x+3) \times 4(2x-5)$ M1: Attempts product rule to give an expression of the form $p(2x-5)^{2} + q(x+3)(2x-5)$ M1: Multiplies out and collects terms A1: f'(x) = $12x^{2} - 16x - 35^{*}$		M1 M1A1*