

Mark Scheme (Results) Summer 2010

GCE

Core Mathematics C1 (6663)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA023696 All the material in this publication is copyright © Edexcel Ltd 2010

SOME GENERAL PRINCIPLES FOR C1 MARKING

(But the particular mark scheme always takes precedence)

Method marks

Usually we would overlook simple arithmetic errors or sign slips but the correct **processes** should be used. So dividing by a number instead of subtracting would be M0 but adding a number instead of subtracting would be treated as the correct process but a sign error.

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, \ q \neq 0$, leading to $x = ...$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Equation of a straight line

Apply the following conditions to the M mark for the equation of a line through (a,b):

If the *a* and *b* are the wrong way round the M mark can still be given if a correct formula is seen,

(e.g. $y - y_1 = m(x - x_1)$) otherwise M0.

If (*a*, *b*) is substituted into y = mx + c to find *c*, the M mark is for attempting this and scored when c = ... is reached.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A</u> (or B) marks which <u>would have been</u> <u>lost by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

If in doubt, send the response to Review.

June 2010 Core Mathematics C1 6663 Mark Scheme

Question Number	Scheme	Marks
1.	$\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ $= 2\sqrt{3}$	M1
	$=2\sqrt{3}$	A1 2
	Notes	
	M1 for $5\sqrt{3}$ from $\sqrt{75}$ or $3\sqrt{3}$ from $\sqrt{27}$ seen anywhere	
	A1 for $2\sqrt{3}$; allow $\sqrt{12}$ or $k = 2, x = 3$ allow $k = 1, x = 12$ Some Common errors $\sqrt{75} - \sqrt{27} = \sqrt{48}$ leading to $4\sqrt{3}$ is M0A0 $25\sqrt{3} - 9\sqrt{3} = 16\sqrt{3}$ is M0A0	

PMT

Question Number	Scheme	Marks
2.	$\frac{8x^4}{4} + \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - 5x + c$	M1 A1
	$= 2x^4 + 4x^{\frac{3}{2}}, -5x + c$	A1 A1
	Notes	4
	M1 for some attempt to integrate a term in $x: x^n \to x^{n+1}$	
	1 st A1 for correct, possibly un-simplified x^4 or $x^{\frac{3}{2}}$ term. e.g. $\frac{8x^4}{4}$ or $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$	
	2^{nd} A1 for <u>both</u> $2x^4$ and $4x^{\frac{3}{2}}$ terms correct and simplified on the same line	
	N.B. some candidates write $4\sqrt{x^3}$ or $4x^{1\frac{1}{2}}$ which are, of course, fine for A1	
	3^{rd} A1 for $-5x+c$. Accept $-5x^1+c$. The + <i>c</i> must appear on the same line as the $-5x$ N.B. We do not need to see one line with a fully correct integral	
	Ignore ISW (ignore incorrect subsequent working) if a correct answer is followed by an i	incorrect version.
	Condone poor use of notation e.g. $\int 2x^4 + 4x^{\frac{3}{2}} - 5x + c$ will score full marks.	

Question Number	Scheme		Mark	Marks	
3 .					
(a)	$3x-6 < 8-2x \rightarrow 5x < 14$	(Accept $5x - 14 < 0$ (o.e.))	M1		
	$x < 2.8$ or $\frac{14}{5}$ or $2\frac{4}{5}$	$(\text{condone} \leq)$	A1	(2)	
(b)	Critical values are $x = \frac{7}{2}$ and -1		B1		
	Choosing "inside" $-1 < x < \frac{7}{2}$		M1 A1	(3)	
(c)	-1 < x < 2.8		B1ft	(1)	
	Accept any exac	et equivalents to -1, 2.8, 3.5		6	
		Notes			
(a)	M1 for attempt to rearrange to $kx < m$ Allow $5x = 14$ or even $5x > 14$	(o.e.) Either $k = 5$ or $m = 14$ should be corrected by the second sec	rect		
(b)	M1 ft their values and choose the "ins A1 for fully correct inequality (Must Condone seeing $x < -1$ in working	May be implied by a correct inequality) side" region t be in part (b): do not give marks if only see ng provided $-1 < x$ is in the final answer. $x < \frac{7}{2}$ or $x > -1$ "blank space" $x < \frac{7}{2}$ score			
	BUT allow $x > -1$ and $x < \frac{7}{2}$ to score Also $\left(-1, \frac{7}{2}\right)$ will score M1A1	re M1A1 (the "and" must be seen)			
		and a number line even with "open" ends is	MOAD		
	Allow 3.5 instead of $\frac{7}{2}$	and a number mile even with open ends is	WUAU		
(c)	and part (b) provided both answ Allow use of "and" between ine		t (a)		
	If their set is empty allow a suita	able description in words or the symbol \emptyset .			
		(b) they simply leave their answer as $x < 31$ ft as this is a correct follow through of the			
	Penalise use of \leq only on the A1 in pa				

Question Number	Scheme	Mar	⁻ ks
4. (a)	6	B1	
(u)	$(x+3)^2 + 2$ or $p = 3$ or $\frac{6}{2}$ q = 2	B1	(2)
(b)	U shape with min in 2^{nd} quad (Must be above <i>x</i> -axis and not on <i>y</i> =axis)	B1	
	U shape crossing y-axis at (0, 11) only (Condone (11,0) marked on y-axis)	B1	(2)
(c)	$b^2 - 4ac = 6^2 - 4 \times 11$	M1	
	= -8	A1	(2) 6
	Notes		
(a)	Ignore an "= 0" so $(x+3)^2 + 2 = 0$ can score both marks		
(b)	 The U shape can be interpreted fairly generously. Penalise an obvious V on 1st B The U needn't have equal "arms" as long as there is a clear min that "holds water 1st B1 for U shape with minimum in 2nd quad. Curve need not cross the <i>y</i>-axis but minimum should NOT touch <i>x</i>-axis and should be left of (not on) <i>y</i>-axis 2nd B1 for U shaped curve crossing at (0, 11). Just 11 marked on <i>y</i>-axis is fine. The point must be marked on the sketch (do not allow from a table of values Condone stopping at (0, 11) 	p ²	
(c)	M1 for some correct substitution into $b^2 - 4ac$. This may be as part of the quad formula but must be in part (c) and must be only numbers (no <i>x</i> terms presen Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0		
	A1 for -8 only. If they write $-8 < 0$ treat the < 0 as ISW and award A1 If they write $-8 \ge 0$ then score A0 A substitution in the quadratic formula leading to -8 inside the square root So substituting into $b^2 - 4ac < 0$ leading to $-8 < 0$ can score M1A1.	is A0.	
	Only award marks for use of the discriminant in part (c)		

Question Number	Scheme	Marks	
5. (a)	$a_2 = \left(\sqrt{4+3}\right) = \sqrt{7}$	B1	
	$a_3 = \sqrt{\text{"their 7"+3}} = \sqrt{10}$	B1ft	(2)
(b)	$a_4 = \sqrt{10+3} \left(= \sqrt{13}\right)$ $a_5 = \sqrt{13+3} = 4 *$	M1	
	$a_5 = \sqrt{13 + 3} = 4 *$	A1 cso	(2)
	Notes		4
	INDIES		
(a)	$1^{\text{st}} B1$ for $\sqrt{7}$ only		
	2^{nd} B1ft follow through their "7" in correct formula provided they have \sqrt{n} , where <i>n</i> is a integer.	an	
(b)	M1 for an attempt to find a_4 . Should see $\sqrt{\text{"their"}(a_3)^2 + 3}$. Must see evidence for $a_4 = \sqrt{13}$ provided this follows from their a_3 working or answer is sufficient	M1.	
	A1cso for a correct solution (M1 explicit) must include the $= 4$.		
	Ending at $\sqrt{16}$ only is A0 and ending with ± 4 is A0.		
	Ignore any incorrect statements that are not used e.g. common difference = $\sqrt{3}$		
	Listing: A full list: 2 (= $\sqrt{4}$), $\sqrt{7}$, $\sqrt{10}$, $\sqrt{13}$, $\sqrt{16}$ = 4 is fine for M1A1		
	<u>Formula</u> : Some may state (or use) $a_n = \sqrt{3n+1}$ leading to $a_5 = \sqrt{3 \times 5 + 1} = 4$.		
ALT	This will get marks in (a) [if correct values are seen] and can score the M1 in (if $a_n = \sqrt{3n+1}$ or $a_4 = \sqrt{13}$ are seen.	b)	
\pm	If $\pm $ appear any where ignore in part (a) and withhold the final A mark only	ý	

Question Number	Scheme				
6.					
	(-5, 3) Horizontal translation of ± 3	M1			
(a)	(-5, 3) marked on sketch or in text	B1			
	(0, -5) and min intentionally on y-axis Condone $(-5, 0)$ if correctly placed on negative y-axis	A1	(3)		
	(-2, 6) Correct shape and intentionally through $(0,0)$ between the max and min	B1			
(b)	(-2, 6) marked on graph or in text	B1			
	(3, -10) (3, -10) marked on graph or in text	B1	(3)		
(c)	(a =) 5	B1	(1)		
	Notes				
	Turning points (not on axes) should have both co-ordinates given in form(x , y). Do not accept points marked on axes e.g. -5 on x -axis and 3 on y -axis is not sufficient. For repeated offenders apply this penalty once only at first offence and condone elsewhere.				
	In (a) and (b) no graphs means no marks.				
	In (a) and (b) the ends of the graphs do not need to cross the axes provided max and min	are clear			
(a)	M1 for a horizontal translation of ± 3 so accept i.e max in 1 st quad <u>and</u> coordinates of (1, 3) <u>or</u> (6, -5) seen. [Horizontal translation to the left should have a min <u>on</u> the <i>y</i> -axis] If curve passes through (0,0) then M0 (and A0) but they could score the B1 mark.				
	A1 for minimum clearly on negative y-axis and at least -5 marked on y-axis. Allow this mark if the minimum is very close and the point $(0, -5)$ clearly indic	cated			
(b)	1 st B1 Ignore coordinates for this mark Coordinates or points on sketch override coordinates given in the text. Condone (y, x) confusion for points on axes only. So $(-5,0)$ for $(0, -5)$ is OK if the point is marked correctly but $(3,10)$ is B0 even if in 4 th quadrant.				
(c)	This may be at the bottom of a page or in the questionmake sure you scroll up an	d down!			

Question Number	Scheme	Marks			
7.	$\frac{3x^2 + 2}{x} = 3x + 2x^{-1}$	M1 A1			
	$(y'=)24x^2, -2x^{-\frac{1}{2}}, +3-2x^{-2}$	M1 A1 A1A1			
	$\frac{3x^2 + 2}{x} = 3x + 2x^{-1}$ (y' =) 24x ² , -2x ^{-1/2} , +3 - 2x ⁻² $\begin{bmatrix} 24x^2 - 2x^{-1/2} + 3 - 2x^{-2} \end{bmatrix}$	6			
	Notes				
	1 st M1 for attempting to divide(one term correct)				
	1 st A1 for both terms correct on the same line, accept $3x^1$ for $3x$ or $\frac{2}{x}$	for $2x^{-1}$			
	These first two marks may be implied by a correct differentiation at	the end.			
	2^{nd} M1 for an attempt to differentiate $x^n \rightarrow x^{n-1}$ for at least one term of their expression				
	"Differentiating" $\frac{3x^2+2}{x}$ and getting $\frac{6x}{1}$ is M0				
	2^{nd} A1 for $24x^2$ only				
	3 rd A1 for $-2x^{-\frac{1}{2}}$ allow $\frac{-2}{\sqrt{x}}$. Must be simplified to this, not e.g. $-\frac{1}{\sqrt{x}}$	$\frac{-4}{2}x^{-\frac{1}{2}}$			
	4 th A1 for $3-2x^{-2}$ allow $\frac{-2}{x^2}$. Both terms needed. Condone $3+(-2)^{-2}$	$(2)x^{-2}$			
	If "+ c " is included then they lose this final mark				
	They do not need one line with all terms correct for full marks. Award marks when first seen in this question and apply ISW.				
	Condone a mixed line of some differentiation and some division				
	e.g. $24x^2 - 4x^{\frac{1}{2}} + 3x + 2x^{-1}$ can score 1 st M1A1 and 2 nd M1A1				
	$c.g. \ 2 + \pi - + \pi + 5\pi + 2\pi can score + with the and 2 WIHT$				
Quotient /Product	(1) (-2)	ttempt: $\frac{P-Q}{x^2}$ or $R + (-S)$ with			
Rule	$\frac{(x^{-1})^{2}}{x^{2}} \text{ or } 6x(x^{-1}) + (3x^{2} + 2)(-x^{-2}) \text{ one of } P,Q \text{ or } K$	rect expression			
	$\frac{3x^2-2}{x^2}$ or $3-\frac{2}{x^2}$ (o.e.) 4 th A1 same ru	•			

PMT

PMT

Question	Scheme	Marks	
Number 8.			
o. (a)	$m_{AB} = \frac{4-0}{7-2} \left(=\frac{4}{5}\right)$	M1	
	Equation of AB is: $y - 0 = \frac{4}{5}(x - 2)$ or $y - 4 = \frac{4}{5}(x - 7)$ (o.e.)	M1	
	4x - 5y - 8 = 0 (o.e.)	A1	(3)
(b)	$(AB =)\sqrt{(7-2)^2 + (4-0)^2}$ = $\sqrt{41}$	M1	
	$=\sqrt{41}$	A1	(2)
(c)	Using isos triangle with $AB = AC$ then $t = 2 \times y_A = 2 \times 4 = 8$	B1	(1)
(d)	Area of triangle = $\frac{1}{2}t \times (7-2)$	M1	
	= 20	A1	(2)
	Notes		8
(a)	For a correctly quoted formula with some correct substitution award M1 If no formula is quoted then a fully correct expression is needed for the M mark 1 st M1 for attempt at gradient of <i>AB</i> . Some correct substitution in correct formula. 2 nd M1 for an attempt at equation of <i>AB</i> . Follow through their gradient, not e.g. $-\frac{1}{m}$ Using $y = mx + c$ scores this mark when <i>c</i> is found. Use of $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ scores 1 st M1 for denominator, 2 nd M1 for use of a correct point A1 requires integer form but allow 5y + 8 = 4x etc. Must have an "=" or A0	ıt	
(b)	M1 for an expression for AB or AB^2 . Ignore what is "left" of the equals sign		
(c)	B1 for $t = 8$. May be implied by correct coordinates (2, 8) or the value appearing in ((d)	
(d)	M1 for an expression for the area of the triangle, follow through their $t \ne 0$ but much have the $(7-2)$ or 5 and the $\frac{1}{2}$.	st	
DET	e.g. $\begin{bmatrix} 2 & 7 & 2 & 2 \\ 0 & 4 & t & 0 \end{bmatrix}$ Area $= \frac{1}{2} \Big[8 + 7t + 0 - (0 + 8 + 2t) \Big]$ Must have the $\frac{1}{2}$ for M1		

Question Number	Scheme	Marks	6
9. (a)	a + 29d = 40.75 or $a = 40.75 - 29d$ or $29d = 40.75 - a$	M1 A1	(2)
(b)	$(S_{30}) = \frac{30}{2}(a+l) \text{ or } \frac{30}{2}(a+40.75) \text{ or } \frac{30}{2}(2a+(30-1)d) \text{ or } 15(2a+29d)$	M1	
	So $1005 = 15[a + 40.75]$ *	A1 cso	(2)
(c)	67 = $a + 40.75$ so $\underline{a = (\pounds) \ 26.25 \text{ or } 2625p \text{ or } 26\frac{1}{4} \text{ NOT } \frac{105}{4}}$	M1 A1	
	29d = 40.75 - 26.25	M1	(4)
	= 14.5 so $\underline{d} = (\pounds)0.50 \text{ or } 0.5 \text{ or } 50 \text{ p}$ or $\frac{1}{2}$	A1	(4)
			8
	Notes		
	Ignore any floating £ signs e.g. $a + 29d = \pounds40.75$ is OK for M1A1 These two marks must be scored in (a). Some may omit (a) but get correct equat in (c) [or (b)] but we do not give the marks retrospectively.	ion	
	Parts (b) and (c) may run together		
(b)	M1 for an attempt to use an S_n formula with $n = 30$.		
	Must see one of the printed forms. (S_{30} = is not required)		
	A1cso for forming an equation with 1005 and S_n and simplifying to printed answer. Condone £ signs e.g. $15[a+ \pounds 40.75]=1005$ is OK for A1		
(c)	1 st M1 for an attempt to simplify the given linear equation for <i>a</i> . Correct processes. Must get to $ka =$ or $k = a + m$ i.e. one step (division or subtraction) from $a =$ Commonly: 15 <i>a</i> = 1005 - 611.25 (= 393.75)		
	1 st A1 For $a = 26.25$ or 2625p or $26\frac{1}{4}$ NOT $\frac{105}{4}$ or any other fraction		
	2^{nd} M1 for correct attempt at a linear equation for <i>d</i> , follow through their <i>a</i> or equation Equation just has to be linear in <i>d</i> , they don't have to simplify to $d =$ 2^{nd} A1 depends upon 2^{nd} M1 and use of correct <i>a</i> . Do not penalise a second time if the were minor arithmetic errors in finding <i>a</i> provided $a = 26.25$ (o.e.) is used.		
	Do not accept other fractions other than $\frac{1}{2}$		
	2 If answer is in pence a "p" must be seen.		
Sim Equ	Use this scheme: 1st M1A1 for <i>a</i> and 2^{nd} M1A1 for <i>d</i> . Typically solving: $1005=30a + 435d$ and $40.75 = a + 29d$. If they find <i>d</i> first then follow through use of their <i>d</i> when finding <i>a</i> .		

Question	Scheme	Marks
Number 10. (a)	(i) \cap shape (anywhere on diagram)	B1
	Passing through or stopping at $(0, 0)$ and $(4,0)$ only(Needn't be \cap shape)	B1
	(ii) correct shape (-ve cubic) with a max and min drawn anywhere	B1
	4 0 (7) 0 0 0 0 0 0 0 0 0 0 0 0 0	B1 B1 (5)
	Condone (0,4) or (0, 7) marked correctly on <i>x</i> -axis. Don't penalise poor overlap near or Points must be marked on the sketchnot in the text	igin.
(b)	$x(4-x) = x^{2}(7-x) (0=)x[7x-x^{2}-(4-x)]$	M1
	$(0=)x[7x-x^2-(4-x)]$ (o.e.)	B1ft
	$0 = x\left(x^2 - 8x + 4\right) *$	A1 cso (3)
(c)	$(0 = x^2 - 8x + 4 \Rightarrow)x = \frac{8 \pm \sqrt{64 - 16}}{2}$ or $(x \pm 4)^2 - 4^2 + 4(=0)$	M1
	$(x - 4)^2 = 12$	A1
	$ (0 - x - 8x + 4 \implies) x - \frac{2}{2} \text{or} (x - 4)^2 = 12 $ $ = \frac{8 \pm 4\sqrt{3}}{2} \text{or} (x - 4) = \pm 2\sqrt{3} $	B1
	$x = 4 \pm 2\sqrt{3}$	A1
	From sketch A is $x = 4 - 2\sqrt{3}$	M1
	So $y = (4 - 2\sqrt{3})(4 - [4 - 2\sqrt{3}])$ (dependent on 1 st M1)	M1
	$=-12+8\sqrt{3}$	A1 (7) 15
	Notes	
(b)	M1 for forming a suitable equation B1 for a common factor of x taken out legitimately. Can treat this as an M mark. Can cubic = 0 found from an attempt at solving their equations e.g. $x^3 - 8x^2 - 4x = x$ A1cso no incorrect working seen. The "= 0" is required but condone missing from some working. Cancelling the x scores B0A0.	(
(c)	1 st M1 for some use of the correct formula or attempt to complete the square 1 st A1 for a fully correct expression: condone + instead of \pm or for $(x-4)^2 = 12$	
	B1 for simplifying $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{12} = 2\sqrt{3}$. Can be scored independently of this 2^{nd} A1 for correct solution of the form $p + q\sqrt{3}$: can be \pm or $+$ or -2^{nd} M1 for selecting their answer in the interval (0,4). If they have no value in (0,4) scor 3^{rd} M1 for attempting $y = \dots$ using their x in correct equation. An expression needed for M 3^{rd} A1 for correct answer. If 2 answers are given A0.	re M0

Question Number	Scheme	Marks	
11. (a)	$(y=)\frac{3x^2}{2} - \frac{5x^{\frac{1}{2}}}{\frac{1}{2}} - 2x (+c)$	M1A1A1	
	$f(4) = 5 \implies 5 = \frac{3}{2} \times 16 - 10 \times 2 - 8 + c$	M1	
	c = 9	A1 (5)	
	$\left[f(x) = \frac{3}{2}x^2 - 10x^{\frac{1}{2}} - 2x + 9\right]$		
(b)			
	$m = 3 \times 4 - \frac{5}{2} - 2 \left(= 7.5 \text{ or } \frac{15}{2}\right)$	M1	
	Equation is: $y-5 = \frac{15}{2}(x-4)$	M1A1	
	$\frac{2y - 15x + 50 = 0}{0.e.}$ o.e.	A1 (4) (9marks)	
(a)	1 st M1 for an attempt to integrate $x^n \rightarrow x^{n+1}$		
	1^{st} A1for all east 2 correct terms in x (unsimplified) 2^{nd} A1for all 3 terms in x correct (condone missing +c at this point). Needn't be simplified 2^{nd} M1for using the point (4, 5) to form a linear equation for c. Must use $x = 4$ and $y = 5$ and a^{rd} M1for $c = 9$. The final expression is not required.		
(b)	1 st M1 for an attempt to evaluate $f'(4)$. Some correct use of $x = 4$ in $f'(x)$ but condone slips. They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $f'(x)$ with $x = 4$. Award this mark wherever it is seen.		
	2^{nd} M1 for using their value of m [or their $-\frac{1}{m}$] (provided it clearly comes from using :	x = 4 in	
	f'(x)) to form an equation of the line through (4,5)).		
	Allow this mark for an attempt at a normal or tangent. Their <i>m</i> must be numeri Use of $y = mx + c$ scores this mark when <i>c</i> is found. 1 st A1 for any correct expression for the equation of the line 2 nd A1 for any correct equation with integer coefficients. An "=" is required. e.g. $2y = 15x - 50$ etc as long as the equation is correct and has integer coefficients		
Normal	Attempt at normal can score both M marks in (b) but A0A0		

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023696 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH