

Mark Scheme (Results)

January 2013

GCE Core Mathematics C1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code US034359 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Principles for Core Mathematics Marking

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

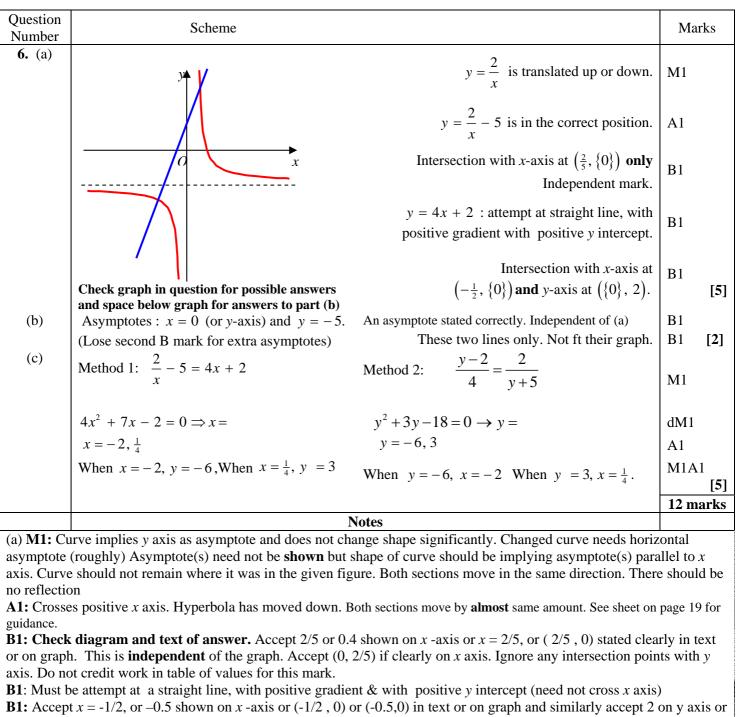
Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

January 2013 6663 Core Mathematics C1 Mark Scheme


Question Number	Scheme	Marks
1.	$(1 + 1^2)$	
	$x(1-4x^2)$ Accept $x(-4x^2+1)$ or $-x(4x^2-1)$ or $-x(-1+4x^2)$ or even $4x(\frac{1}{4}-x^2)$ or equivalent	B1
	Accept $x(-4x + 1)$ or $-x(4x - 1)$ or $-x(-1 + 4x)$ or even $4x(\frac{1}{4} - x)$ or equivalent quadratic (or initial cubic) into two brackets	M1
	x(1-2x)(1+2x) or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2x-1)$	
	x(1-2x)(1+2x) of $-x(2x-1)(2x+1)$ of $x(2x-1)(-2x-1)$	A1
		[3]
		3 marks
	Notes	<u> </u>
	B1 : Takes out a factor of x or $-x$ or even $4x$. This line may be implied by correct final answer, but if this stage	
	is shown it must be correct . So B0 for $x(1+4x^2)$	
	M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note 1 in General	
	Principles). e.g. x (1 – 4x) (x – 1). Also allow attempts to factorise cubic such as $(x – 2x^2)(1 + 2x)$ etc	
	N.B. Should not be completing the square here.	
	A1: Accept either $x(1-2x)(1+2x)$ or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2x-1)$. (No fractions f	for this final
	answer)	
	Specific situations	
	Note: $x(1-4x^2)$ followed by $x(1-2x)^2$ scores B1M1A0 as factors follow quadratic factorisation	n criteria
	And $x(1-4x^2)$ followed by $x(1-4x)(1+4x)$ B1M0A0.	
	Answers with no working: Correct answer gets all three marks B1M1A1	
	: $x(2x-1)(2x+1)$ gets B0M1A0 if no working as $x(4x^2-1)$ would e	earn B0
	Poor bracketing: e.g. $(-1 + 4x^2) - x$ gets B0 unless subsequent work implies bracket round the case candidate may recover the mark by the following correct work.	

Question Number	Scheme	Marks
2.		
	$(8^{2x+3} = (2^3)^{2x+3}) = 2^{3(2x+3)}$ or 2^{ax+b} with $a = 6$ or $b = 9$	M1
	$= 2^{6x+9}$ or $= 2^{3(2x+3)}$ as final answer with no errors or $(y =)6x + 9$ or $3(2x + 3)$	A1
		[2]
		2 marks
	Notes	
	M1: Uses $8 = 2^3$, and multiplies powers $3(2x + 3)$. Does not add powers. (Just $8 = 2^3$ or $8^{\frac{1}{3}}$	= 2 is M0)
	A1: Either 2^{6x+9} or $= 2^{3(2x+3)}$ or $(y=)6x+9$ or $3(2x+3)$	
	Note: Examples: 2^{6x+3} scores M1A0	
	: $8^{2x+3} = (2^3)^{2x+3} = 2^{3+2x+3}$ gets M0A0	
	Special case: : $= 2^{6x} 2^9$ without seeing as single power M1A0	
	Alternative method using logs: $8^{2x+3} = 2^y \Rightarrow (2x+3)\log 8 = y\log 2 \Rightarrow y = \frac{(2x+3)\log 8}{\log 2}$	M1
	So $(y =)6x + 9$ or $3(2x + 3)$	A1 [2]

QuestionSchemeMarks3. (i) $(5 - \sqrt{8})(1 + \sqrt{2})$ $= 5 + 5\sqrt{2} - \sqrt{8} - 4$ $= 5 + 5\sqrt{2} - 2\sqrt{2} - 4$ $= 1 + 3\sqrt{2}$ M1B1 $= 5 + 5\sqrt{2} - 2\sqrt{2} - 4$ $= 1 + 3\sqrt{2}$ $\sqrt{8} - 2\sqrt{2}$, scen or implied at any point.(ii)Method 1Method 2Method 3(iii)Either $\sqrt{80} + \frac{30}{\sqrt{5}} \left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ Or $\left(\frac{\sqrt{400} + 30}{\sqrt{5}}\right) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$ M1 $= 4\sqrt{5} +$ $= 4\sqrt{5} + 6\sqrt{5}$ $= (\frac{20 +}{})$ $= 4\sqrt{5} + 6\sqrt{5}$ B1Alternative for (i) $(5 - 2\sqrt{2})(1 + \sqrt{2})$ $= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be semplified $e.g. = 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e. $e.g. = 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e. $e.g. = 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e. B1(i)M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) - can appear as tableB1: $\sqrt{8} - 2\sqrt{2}$, scen or implied at any point A1: Fally and correctly simplified to 1 + $3\sqrt{2}$ or $a - 1$ and $b - 3$.(ii)M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(-\frac{\sqrt{5}}{\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\sqrt{5}}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\sqrt{5}}{\sqrt{5}}$ B1: (Independent mark) States $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ B1: (Independent mark) States $\sqrt{80} = \frac{40}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$	Ouestien		Calcura -	Marles	
3. (i) $ \begin{cases} (5 - \sqrt{8})(1 + \sqrt{2}) \\ = 5 + 5\sqrt{2} - \sqrt{8} - 4 \\ = 5 + 5\sqrt{2} - 2\sqrt{2} - 4 \\ = 1 + 3\sqrt{2} \end{cases} $ MI HI = 1 + $3\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. All [3] (ii) Method 1 Method 2 Method 3 (ii) Method 1 Method 2 Method 3 $= 4\sqrt{5} + = \left(\frac{\sqrt{400} + 30}{\sqrt{5}}\right)\frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} - \sqrt{80} + \sqrt{180}$ M1 $= 4\sqrt{5} + = \left(\frac{20 +}{}\right)\frac{1}{} = 4\sqrt{5} + = 4\sqrt{5} + = \left(\frac{20 +}{}\right)\frac{1}{} = 4\sqrt{5} + 6\sqrt{5}$ A1 Alternative $(5 - 2\sqrt{2})(1 + \sqrt{2})$ This carns the B1 mark. = $10\sqrt{5}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $-5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $-5 + 3\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correct terms or simplifying to correct expansion. (This may be implified by correct answer) - can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Multiplies due brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) - can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(-\frac{\sqrt{5}}{\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) - \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or ceither $\sqrt{400} - 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B. There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1 as before	-		Scheme	Marks	
$ \begin{array}{c} = \overline{3} + 5\sqrt{2} - \sqrt{8} - 4 \\ = 5 + 5\sqrt{2} - 2\sqrt{2} - 4 \\ = 5 + 5\sqrt{2} - 2\sqrt{2} - 4 \\ = 1 + 3\sqrt{2} \sqrt{8} = 2\sqrt{2}, \text{ seen or implied at any point.} \\ = 1 + 3\sqrt{2} 1 + 3\sqrt{2} \text{ or } a = 1 \text{ and } b = 3. \end{array} \begin{array}{c} \text{M1} \\ \text{B1} \\ \text{A1} [3] \end{array} \\ \hline \begin{array}{c} \text{(ii)} \\ \text{(iii)} \\ \hline \begin{array}{c} \text{Method 1} \\ \text{Bther} \sqrt{80} + \frac{30}{\sqrt{5}} \left(\sqrt{\frac{5}{5}} \right) \\ = 4\sqrt{5} + \ldots \\ = 4\sqrt{5} + \ldots \\ = 4\sqrt{5} + 6\sqrt{5} \\ = 10\sqrt{5} \\ \hline \begin{array}{c} \text{M1} \\ \text{Method 2} \\ \text{M1} \\ \text{B1} \\ \hline \begin{array}{c} \text{M1} \\ \text{M1} \\ \text{B1} \\ \text{M1} \\ \text{M1} \\ \hline \begin{array}{c} \text{B1} \\ \text{B1} \\ \text{M1} \\ \hline \begin{array}{c} \text{B1} \\ \text{B1} \\ \text{B1} \\ \hline \begin{array}{c} \text{M1} \\ \text{B1} \\ \text{M1} \\ \text{B1} \\ \hline \begin{array}{c} \text{M1} \\ \text{B1} \\ \text{M1} \\ \hline \begin{array}{c} \text{B1} \\ \text{B1} \\ \text{B1} \\ \hline \begin{array}{c} \text{B1} \\ \text{C} \\ C$		$(5-\sqrt{8})(1+\sqrt{2})$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				M1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\sqrt{8} = 2\sqrt{2}$, soon or implied at any point	B1	
(ii) Method 1 Method 2 Method 3 (iii) Method 1 Method 2 Method 3 Fither $\sqrt{80} + \frac{30}{\sqrt{5}} (\frac{\sqrt{5}}{\sqrt{5}})$ Or $(\frac{\sqrt{400} + 30}{\sqrt{5}}) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$ M1 $= 4\sqrt{5} +$ $= 4\sqrt{5} + 6\sqrt{5}$ $= (\frac{20 +}{})$ $= 4\sqrt{5} + 6\sqrt{5}$ $= 4\sqrt{5} +$ $= 4\sqrt{5} + 6\sqrt{5}$ $= (\frac{50\sqrt{5}}{5})$ $= 4\sqrt{5} + 6\sqrt{5}$ A1 Alternative $(5 - 2\sqrt{2})(1 + \sqrt{2})$ This carns the B1 mark. $= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified $e.g. = 5 + 3\sqrt{2} - 2\sqrt{4} + 0$ B1 A1 [3] $= 1 + 3\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (i) M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be simplified by correct answer) - can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right) by \left(\frac{\sqrt{5}}{\sqrt{5}}\right) or \left(-\frac{\sqrt{5}}{\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ the M1 A1as before					1
(ii) Either $\sqrt{80} + \frac{30}{\sqrt{5}} \left(\frac{\sqrt{5}}{\sqrt{5}} \right)$ Or $\left(\frac{\sqrt{400} + 30}{\sqrt{5}} \right) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$ M1 $= 4\sqrt{5} +$ $= 4\sqrt{5} + 6\sqrt{5}$ $= \left(\frac{20 +}{} \right) {}$ $= 4\sqrt{5} +$ B1 $= 4\sqrt{5} + 6\sqrt{5}$ $= \left(\frac{50\sqrt{5}}{5} \right)$ $= 4\sqrt{5} + 6\sqrt{5}$ A1 Alternative $\left(5 - 2\sqrt{2} \right) \left(1 + \sqrt{2} \right)$ This earns the B1 mark. $= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified $c.g. = 5 + 3\sqrt{2} - 2\sqrt{4} o.c.$ B1 $A1 = 1 + 3\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (i) M1 : Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be seen implied by correct answer) - can appear as table B1 : $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1 : Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}} \right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}} \right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}} \right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}} \right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1 : (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods c.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		$=1+3\sqrt{2}$	$1 + 3\sqrt{2}$ of $a = 1$ and $b = 5$.		I
Either $\sqrt{80} + \frac{30}{\sqrt{5}} \left(\frac{\sqrt{2}}{\sqrt{5}} \right)$ Or $\left(\frac{\sqrt{400} + 30}{\sqrt{5}} \right) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$ M1 $= 4\sqrt{5} +$ $= 4\sqrt{5} + 6\sqrt{5}$ $= \left(\frac{20 +}{} \right) = 4\sqrt{5} +$ B1 $= 4\sqrt{5} + 6\sqrt{5}$ $= \left(\frac{50\sqrt{5}}{5} \right)$ $= 4\sqrt{5} + 6\sqrt{5}$ A1 Alternative $(5 - 2\sqrt{2})(1 + \sqrt{2})$ This earns the B1 mark. $= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e. For earlier use of $2\sqrt{2}$ $= 1 + 3\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (i) M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) - can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(-\frac{\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then and $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		Method 1 Meth	od 2 Method 3		
(i) M1: Multiplies out brackets correct by giving four correct terms or simplifying to correct expansion. (This may be simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before	(ii)	Fither $\sqrt{80} + 30\left(\sqrt{5}\right)$			
$= \left\{ \frac{20 +}{} \right\}_{}^{c} = 4\sqrt{5} + 6\sqrt{5} = \left\{ \frac{50\sqrt{5}}{5} \right\}_{}^{c} = 4\sqrt{5} + 6\sqrt{5} = 4\sqrt{5} + 6\sqrt{5} = 10\sqrt{5} = 10\sqrt$		Either $\sqrt{30} + \frac{1}{\sqrt{5}} \left(\frac{1}{\sqrt{5}} \right)$ Or	$\left(\frac{\sqrt{400+30}}{\sqrt{5}}\right)\frac{\sqrt{5}}{\sqrt{5}} \qquad \qquad \sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$	M1	
$= \left\{ \frac{20 +}{} \right\}_{}^{c} = 4\sqrt{5} + 6\sqrt{5} = \left\{ \frac{50\sqrt{5}}{5} \right\}_{}^{c} = 4\sqrt{5} + 6\sqrt{5} = 4\sqrt{5} + 6\sqrt{5} = 10\sqrt{5} = 10\sqrt$		$= 4\sqrt{5} +$		B1	
$= \left(\frac{5}{\sqrt{5}}\right) = 4\sqrt{5} + 6\sqrt{5}$ $= 10\sqrt{5}$ A1 [3] Alternative for (i) $= 5 + 5\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e. For earlier use of $2\sqrt{2}$ $= 1 + 3\sqrt{2}$ This carns the B1 mark. $= 5 + 5\sqrt{2} - 2\sqrt{2}\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e. For earlier use of $2\sqrt{2}$ B1 A1 [3] 6 marks (i) M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before			$\frac{20+}{}$ = $4\sqrt{5}+$		
Alternative for (i) $(5 - 2\sqrt{2})(1 + \sqrt{2})$ $= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e.M1B1 Alt [3] $= 1 + 3\sqrt{2}$ NotesIt is used to find the probability of the prob		$= 4\sqrt{5} + 6\sqrt{5} \qquad = \left(\frac{5}{5}\right)$	$\frac{0\sqrt{5}}{5} = 4\sqrt{5} + 6\sqrt{5}$		
Alternative for (i) $ \begin{pmatrix} (5 - 2\sqrt{2})(1 + \sqrt{2}) & \text{This earns the B1 mark.} \\ = 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2} & \text{Multiplies out correctly with } 2\sqrt{2} & \text{This may be seen} \\ or implied and may be simplified \\ e.g. = 5 + 3\sqrt{2} - 2\sqrt{4} & o.e. \\ For earlier use of 2\sqrt{2} & \text{B1} \\ = 1 + 3\sqrt{2} & 1 + 3\sqrt{2} & or a = 1 \text{ and } b = 3. \\ \hline \text{M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as table \\ B1: \sqrt{8} = 2\sqrt{2}, seen or implied at any pointA1: Fully and correctly simplified to 1 + 3\sqrt{2} or a = 1 and b = 3.(ii)M1: Rationalises denominator i.e. Multiplies \left(\frac{k}{\sqrt{5}}\right) by \left(\frac{\sqrt{5}}{\sqrt{5}}\right) or \left(\frac{-\sqrt{5}}{-\sqrt{5}}\right), seen or implied or usesMethod 3 or similar e.g. \left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}B1: (Independent mark) States \sqrt{80} = 4\sqrt{5} Or either \sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20 at any point if they useMethod 2.A1: 10\sqrt{5} or c = 10.N.B There are other methods e.g. \sqrt{80} = \frac{20}{\sqrt{5}} (B1) then add \frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}} then M1 A1as before$		= 10	$\sqrt{5}$		21
(i) (i) (i) (i) (i) (iii) (iii)) (iii) (iii) (iii) (iii) (iii)) (iii)) (iii) (iii)	Alternative for (i)	$(5-2\sqrt{2})(1+\sqrt{2})$	This earns the B1 mark.	[•	<u> </u>
For earlier use of $2\sqrt{2}$ $= 1 + 3\sqrt{2}$ B1 A1 [3] 6 marks (i) M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		$= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$	· · · ·	M1	
(i) Notes $= 1 + 3\sqrt{2}$ $= 1 + 3\sqrt{2}$ $1 + 3\sqrt{2} \text{ or } a = 1 \text{ and } b = 3.$ $A1 [3]$ 6 marks (i) $M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as table B1: \sqrt{8} = 2\sqrt{2}, seen or implied at any pointA1: Fully and correctly simplified to 1 + 3\sqrt{2} or a = 1 and b = 3.(ii) M1: \text{ Rationalises denominator i.e. Multiplies \left(\frac{k}{\sqrt{5}}\right) \text{ by } \left(\frac{\sqrt{5}}{\sqrt{5}}\right) \text{ or } \left(\frac{-\sqrt{5}}{-\sqrt{5}}\right), seen or implied or usesMethod 3 or similar e.g. \left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}B1: (Independent mark) States \sqrt{80} = 4\sqrt{5} Or either \sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20 at any point if they useMethod 2.A1: 10\sqrt{5} or c = 10.N.B There are other methods e.g. \sqrt{80} = \frac{20}{\sqrt{5}} (B1) then add \frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}} then M1 A1as before$			e.g. = $5 + 3\sqrt{2} - 2\sqrt{4}$ o.e.		
Notes6 marks(i)M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as tableB1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any pointA1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.(ii)M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or usesMethod 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they useMethod 2.A1: $10\sqrt{5}$ or $c = 10$.N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before			For earlier use of $2\sqrt{2}$	B1	
Notes(i)M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.(ii)M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6\times5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$.N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		$= 1 + 3\sqrt{2}$	$1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	A1 [3]]
(i) M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. (ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before				6 mark	KS
(ii) may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before	(i)	M1. Multiplies out brackets correctly g		ion (This	
(ii) A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before	(1)			ion. (11115	
(ii) M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any	point		
M1: Rationalises denominator i.e. Multiplies $\left(\frac{\kappa}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or usesMethod 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$ B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any point if they useMethod 2.A1: $10\sqrt{5}$ or $c = 10$.N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		A1: Fully and correctly simplified to 1 -	+ $3\sqrt{2}$ or $a = 1$ and $b = 3$.		
B1 : (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20$ at any point if they use Method 2. A1 : $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before	(ii)	M1: Rationalises denominator i.e. Mult	iplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or b	uses	
Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}}$	$=6\sqrt{5}$		
Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		B1 : (Independent mark) States $\sqrt{80} = 4$	$\sqrt{5}$ Or either $\sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20$ at any point	if they use	;
N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as before		-		-	
		A1: $10\sqrt{5}$ or $c = 10$.			
Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400} + 30 = 20 + 30 = 50$ earn M0 B1 A0		N.B There are other methods e.g. $\sqrt{80}$ =	$=\frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as be	efore	
		Those who multiply initial expression b	by $\sqrt{5}$ to obtain $\sqrt{400} + 30 = 20 + 30 = 50$ earn M0 B	1 A0	

Question Number	Scheme	Marks
4.	$u_2 = 9, \ u_{n+1} = 2u_n - 1, \ n \ge 1$	
(a)	$u_3 = 2u_2 - 1 = 2(9) - 1$ (=17) $u_3 = 2(9) - 1$.	M1
	$u_4 = 2u_3 - 1 = 2(17) - 1 = 33$ Can be implied by $u_3 = 17$	
	Both $u_3 = 17$ and $u_4 = 33$	A1
		[2]
(b)	$\sum_{r=1}^{4} u_r = u_1 + u_2 + u_3 + u_4$	
	$(u_1) = 5$ $(u_1) = 5$	B1
	$\sum_{r=1}^{4} u_r = "5" + 9 + "17" + "33" = 64$ Adds their first four terms obtained legitimately (see notes below) 64	M1 A1
		[3]
		5 marks
	Notes	
(a) (b)	M1: Substitutes 9 into RHS of iteration formula A1: Needs both 17 and 33 (but allow if either or both seen in part (b)) B1: for $u_1 = 5$ (however obtained – may appear in (a)) May be called $a=5$	
	M1: Uses their u_1 found from $u_2 = 2u_1 - 1$ stated explicitly, or uses $u_1 = 4$ or $5\frac{1}{2}$, and adds it to	u_2 , their
	u_3 and their u_4 only. (See special cases below).	
	There should be no fifth term included. Use of sum of AP is irrelevant and scores M0 A1: 64	

Question Number	Scheme	Marks
5.		
(a)	Gradient of l_2 is $\frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$	B1
	Either $y-6 = "\frac{1}{2}"(x-5)$ or $y = "\frac{1}{2}"x+c$ and $6 = "\frac{1}{2}"(5) + c \implies c = ("\frac{7}{2}")$	M1
	x-2y+7=0 or $-x+2y-7=0$ or $k(x-2y+7) = 0$ with <i>k</i> an integer	A1 [3]
	Puts $x = 0$, or $y = 0$ in their equation and solves to find appropriate co-ordinate	M1
(b)	<i>x</i> -coordinate of <i>A</i> is -7 and <i>y</i> -coordinate of <i>B</i> is $\frac{7}{2}$.	A1 cao [2]
(c)	Area $OAB = \frac{1}{2} (7) \left(\frac{7}{2}\right) = \frac{49}{4} (units)^2$ Applies $\pm \frac{1}{2} (base)(height)$ Applies $\pm \frac{1}{2} (base)(height)$	M1 A1 cso [2]
		7 marks
(a)	Notes B1: Must have $\frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$ o.e. stated and stops, or used in their line equation	
(b) (c)	M1: Full method to obtain an equation of the line through (5,6) with their "m". So $y - 6 = m(x-5)$ with their gradient or uses $y = mx + c$ with (5, 6) and their gradient to find c. Allow any numerical gradient here including -2 or -1 but not zero . (Allow (6,5) as a slip if $y - y_1 = m(x - x_1)$ is quoted first) A1: Accept any multiple of the correct equation, provided that the coefficients are integers and equation = 0 e.g. $-x + 2y - 7 = 0$ or $k(x - 2y + 7) = 0$ or even $2y - x - 7 = 0$ M1: Either one of the x or y coordinates using their equation A1: Needs both correct values. Accept any correct equivalent Need not be written as co-ordinates. Even just -7 and 3.5 with no indication which is which may be awarded the A1. M1: Any correct method for area of triangle <i>AOB</i> , with their values for co-ordinates of <i>A</i> and <i>B</i> (may include negatives) <i>Method usually half base times height but determinants could be used</i> . A1: Any exact equivalent to 49/4, e.g. 12.25. (negative final answer is A0 but replacing by positive is A1) Do not need units. c.s.o. implies if A0 is scored in (b) then A0 is scored in (c) as well. However if candidate has correct line equation in (a) of wrong form may score A0 in (a) and A1 in (b) and (c)	
	Note: Special cases: $\frac{1}{2}(-7)\left(+\frac{7}{2}\right) = -\frac{49}{4}$ (units) ² is M1 A0 but changing sign to area = $+\frac{49}{4}$ (recovery) N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{2}$. may also get $\frac{49}{4}$ as their anso following previous errors. They should be awarded A0 as this answer is not ft and is for correct so Special Case : In (a) and (b): Produces parallel line instead of perpendicular line: So uses $m = -2.7$ treated as a misread as it simplifies the question. The marks will usually be B0 M1 A0, M1 A0, M1 and M1 A0, M2 maximum of $3/7$	wer D lution only This is not

y = 2 or (0, 2) in text or on graph. Need not cross curve and allow on separate axes.

(b) **B1:** For either correct asymptote equation. Second **B1**: For both correct (lose this if extras e.g. $x = \pm 1$ are given also). These asymptotes may follow correctly from equation after wrong graph in (a)

Just y = -5 is B1 B0 This may be awarded if given on the graph. However for other B mark it must be clear that x = 0 (or the y-axis) is an asymptote. NB $x \neq 0$, $y \neq -5$ is B1B0

(c) M1: Either of these equations is enough for the method mark (May appear labelled as part (b))

dM1: Attempt to solve a 3 term quadratic by factorising, formula, completion of square or implied by correct answers. (see note 1) This mark depends on previous mark.

A1: Need both correct *x* answers (Accept equivalents e.g. 0.25) or both correct *y* values (Method 2)

M1: At least one attempt to find *second variable* (usually *y*) using their *first variable* (usually *x*) related to line meeting curve. Should not be substituting *x* or *y* values from part (a) or (b). This mark is **independent** of previous marks. Candidate may substitute in equation of line or equation of curve.

A1: Need both correct *second variable* answers Need not be written as co-ordinates (allow as in the scheme) Note: Special case: Answer only with no working in part (c) can have 5 marks if completely correct, with **both** points found. If co-

ordinates of just one of the points is correct – with no working – this earns M0 M0 A0 M1 A0 (i.e. 1/5)

Question Number	Scheme		Marks
7. (a)	Lewis; arithmetic series, $a = 140$, $d = 20$. $T_{20} = 140 + (20 - 1)(20)$; = 520 OR 120 + (20)(20)	Or lists 20 terms to get to 520	M1; A1 [2]
(b)	Method 1 Either: Uses $\frac{1}{2}n(2a + (n-1)d)$	Method 2 Or: Uses $\frac{1}{2}n(a+l)$	M1
	$\frac{20}{2} (2 \times 140 + (20 - 1)(20))$	$\frac{20}{2}(140 + "520") \qquad \text{ft } 520$ 6600	A1 A1
(c)	Sian; arithmetic series, $a = 300, l = 700, S_n = 8500$ Either: Attempt to use $8500 = \frac{n}{2}(a+l)$	Or: May use both $8500 = \frac{1}{2}n(2a + (n-1)d)$ and l = a + (n-1)d and eliminate d	[3] M1
	$8500 = \frac{n}{2} (300 + 700)$	$8500 = \frac{n}{2} (600 + 400)$	A1
	\Rightarrow n =	= 17	A1 [3]
			8 marks
	Note	25	
(a) (b)	M1: Attempt to use formula for 20 th term of Arithmetic series with first term 140 and $d = 20$. Normal formula rules apply – see General principles at the start of the mark scheme re "Method Marks" Or: uses 120 + 20 <i>n</i> with $n = 20$ Or: Listing method : Lists 140, 160, 180, 200, 220, 240, 260, 280, 520. M1A1 if correct M0A0 if wrong. (So 2 marks or zero) A1: For 520 M1: An attempt to apply $\frac{1}{2}n(2a + (n-1)d)$ or $\frac{1}{2}n(a + l)$ with their values for a, n, d and l A1: Uses $a = 140, d = 20, n = 20$ in their formula (two alternatives given above) but ft on their value of from (a) if they use Method 2. A1: 6600 cao Or: Listing method : Lists 140, 160, 180, 200, 220, 240, 260, 280, 520 and adds 6600 gets M1A1A1- any other answer gets M1 A0A0 provided there are 20 numbers, the first is 140 an the last is 520.		,, 10A0 if value of <i>l</i>
(c) First method	M1: Attempt to use $S_n = \frac{n}{2}(a + l)$ with their va A1: Uses formula with correct values A1: Finds exact value 17	lues for a , and l and $S = 8500$	
Alternative method	M1: If both formulae $8500 = \frac{1}{2}n(2a + (n-1)d)$ before this mark is awarded by valid work. Shoul A1: Correct equation in <i>n</i> only then A1 for 17 exactly Trial and error methods: Finds $d = 25$ and $n =$	d not be using $d = 400$. This would be M0 .	

Question Number	Scheme	Marks
8.	$\left(\frac{dy}{dx}=\right) -x^3 + "2"x^{-2} - "\left(\frac{5}{2}\right)"x^{-3}$	M1
	Raises power correctly on any one term.	M1
	$(y =) \qquad -\frac{1}{4}x^4 + \frac{"2"x^{-1}}{(-1)} - "\left(\frac{5}{2}\right)"\frac{x^{-2}}{(-2)}(+c) \qquad \qquad \text{Kases power concerns on any one term.}$ Any two follow through terms correct.	Alft
	$(y =)$ $-\frac{1}{4}x^4 + \frac{2x^{-1}}{(-1)} - \frac{5}{2}\frac{x^{-2}}{(-2)}(+c)$ This is not follow through – must be correct	A1
	Given that $y = 7$, at $x = 1$, then $7 = -\frac{1}{4} - 2 + \frac{5}{4} + c \implies c =$	M1
	So, $(y =)$ $-\frac{1}{4}x^4 - 2x^{-1} + \frac{5}{4}x^{-2} + c$, $c = 8$ or $(y =) -\frac{1}{4}x^4 - 2x^{-1} + \frac{5}{4}x^{-2} + 8$	A1
		[6]
		6 marks
	Notes	
	M1: Expresses as three term polynomial with powers 3, -2 and –3. Allow slips in coefficients.	
	This may be implied by later integration having all three powers 4, -1 and -2.	
	M1: An attempt to integrate at least one term so $x^n \rightarrow x^{n+1}$ (not a term in the numerator or	
	denominator)	
	A1ft: Any two integrations are correct – coefficients may be unsimplified (follow through errors in coefficients only here) so should have two of the powers 4, -1 and -2 after integration – depends on method mark only. There should be a maximum of three terms here.	
	A1: Correct three terms – coefficients may be unsimplified- do not need constant for this mark	
	Depends on both Method marks	
	M1: Need constant for this mark. Uses $y = 7$ and $x = 1$ in their changed expression in order to f	find <i>c</i> , and
	attempt to find c. This mark is available even after there is suggestion of differentiation.	
	A1: Need all four correct terms to be simplified and need $c = 8$ here.	

Question Number	Scheme	Marks
9. (a)	Method 1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$	M1
) (u)	$b^{2} - 4ac = 6^{2} - 4(k+3)(k-5)$	A1
		B1
	$(b^2 - 4ac =) -4k^2 + 8k + 96$ or $-(b^2 - 4ac =) -4k^2 - 8k - 96$ (with no prior algebraic errors)	DI
	As $b^2 - 4ac > 0$, then $-4k^2 + 8k + 96 > 0$ and so, $k^2 - 2k - 24 < 0$	A1 *
	Method 2: Considers $b^2 > 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$	M1
	$6^2 > 4(k+3)(k-5)$	A1
	$4k^2 - 8k - 96 < 0$ or $-4k^2 + 8k + 96 > 0$ or $9 > (k+3)(k-5)$ (with no prior algebraic arrow)	B1
	errors) and so, $k^2 - 2k - 24 < 0$ following correct work	A1 *
(b)	Attempts to solve $h^2 = 2h = 24$ 0 to size $h = (-)$ (ritial values $h = (-, 4)$)	[4] M1
(0)	Attempts to solve $k^2 - 2k - 24 = 0$ to give $k = (\Rightarrow \text{Critical values}, k = 6, -4.)$	1411
	$k^2 - 2k - 24 < 0$ gives $-4 < k < 6$	M1 A1
		[3] 7 marks
	Notes	
(a)	Method 1: M1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$ or uses quadratic	e formula
	and has this expression under square root. (ignore > 0 , < 0 or $= 0$ for first 3 marks)	
	A1: Correct expression for $b^2 - 4ac$ - need not be simplified (may be under root sign)	
	B1: Uses algebra to manipulate result without error into one of these three term quadratics. Again under root sign in quadratic formula. If inequality is used early in "proof" may see	in may be
	$4k^2 - 8k - 96 < 0$ and B1 would be given for $4k^2 - 8k - 96$ correctly stated.	
	A1: Applies $b^2 - 4ac > 0$ correctly (or writes $b^2 - 4ac > 0$) to achieve the result given in the question.	
	No errors should be seen. Any incorrect line of argument should be penalised here. There are sever reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to of inequality. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$ $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq ac$	o other side
	A1: Correct expressions on either side (ignore >, < or =).	ĸ
	B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sides by 4 again without error	
	A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$.	
(b)	M1: Uses factorisation, formula, completion of square method to find two values for k, or finds two answers with no obvious method M1: Their Lower Limit $< k <$ Their Upper Limit Allow the M mark mark for \leq . (Allow $k <$ upper Limit Allow the M mark mark for \leq .)	
	lower) A1: $-4 < k < 6$ Lose this mark for \leq Allow (-4, 6) [not square brackets] or $k > -4$ and $k < 6$ (must be and	
	not or) Can also use intersection symbol \cap NOT $k > -4$, $k < 6$ (M1A0)	
	Special case : In part (a) uses $c = k$ instead of $k - 5$ - scores 0. Allow $k + 5$ for method marks	
	Special Case: In part (b) Obtaining $-6 < k < 4$ This is a common wrong answer. Give M1 M1 A0 special case.	
	Special Case: In part (b) Use of x instead of $k - M1M1A0$	
	Special Case: $-4 < k < 6$ and $k < -4$, $k > 6$ both given is M0A0 for last two marks. Do not treat	t as isw.

Question Number	Scheme	Marks
10. (a)	This may be done by completion of square or by expansion and comparing coefficients	
	a = 4	B1
	<i>b</i> = 1	B1
		B1
	All three of $a = 4$, $b = 1$ and $c = -1$	[3]
		[3]
(b)	<i>y</i> ↓ U shaped quadratic graph.	M1
	The curve is correctly positioned with the minimum in the third quadrant. It crosses x axis twice on negative x axis and y axis once on positive y axis.	A1
	Curve cuts y-axis at $(\{0\}, 3)$. only	B1
	Curve cuts <i>x</i> -axis at $\left(-\frac{3}{2}, \{0\}\right)$ and $\left(-\frac{1}{2}, \{0\}\right)$.	B1
		[4]
		7 marks
	Notes	
(a)	B1: States $a = 4$ or obtains $4(x + b)^2 + c$,	
	B1: States $b = 1$ or obtains $a(x + 1)^2 + c$,	
	B1: States $a = 4$, $b = 1$ and $c = -1$ or $4(x + 1)^2 - 1$ (Needs all 3 correct for final mark)	
	Special cases: If answer is left as $(2x + 2)^2 - 1$ treat as misread B1B0B0	
	or as $2(x+1)^2 - 1$ then the mark is B0B1B0 from scheme	
(b)	M1: Any position provided U shaped (be generous in interpretation of U shape but V shape is M0 A1: The curve is correctly positioned with the minimum in the third quadrant. It crosses x axis to negative x axis and y axis once on positive y axis. B1: Allow 3 on y axis and allow either $y = 3$ or (0, 3) if given in text Curve does not need to pas this point and this mark may be given even if there is no curve at all or if it is drawn as a line. B1: Allow $-3/2$ and $-1/2$ if given on x axis – need co-ordinates if given in text or $x = -3/2$, $x = -1/2$ decimal equivalents. Curve does not need to pass through these points and this mark may be giver there is no curve. Ignore third point of intersection and allow touching instead of cutting. So even curve <i>might</i> get M0A0 B1 B1.	vice on s through 2 . Accept n even if

Question Number	Scheme	Marks
11.	$C: y = 2x - 8\sqrt{x} + 5, x \ge 0$	
(a)	So, $y = 2x - 8x^{\frac{1}{2}} + 5$	
	$\frac{dy}{dx} = 2 - 4x^{-\frac{1}{2}} + \{0\} \qquad (x > 0)$	M1 A1 A1
		[3
(b)	(When $x = \frac{1}{4}$, $y = 2(\frac{1}{4}) - 8\sqrt{(\frac{1}{4})} + 5$ so) $y = \frac{3}{2}$	B1
	$(\text{gradient} = \frac{dy}{dx} =) 2 - \frac{4}{\sqrt{(\frac{1}{4})}} \{= -6\}$	M1
	Either : $y - \frac{3}{2} = -6 (x - \frac{1}{4})$ or: $y = -6 x + c$ and	1) (1
	$\frac{3}{2} = -6 \left(\frac{1}{4}\right) + c \implies c = 3$	dM1
	So $y = -6x + 3$	A1
		[4
(c)	Tangent at Q is parallel to $2x - 3y + 18 = 0$ ($y = \frac{2}{3}x + 6 \Rightarrow$) Gradient $= \frac{2}{3}$. so tangent gradient is $\frac{2}{3}$	D1
		B1
	So, $\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$ numerical gradient.	M1
	$\Rightarrow \frac{4}{3} = \frac{4}{\sqrt{x}} \Rightarrow x = 9$ Ignore extra answer $x = -9$	A1
	When $x = 9$, $y = 2(9) - 8\sqrt{9} + 5 = -1$ Substitutes their found x into equation of curve.	dM1
	y = -1.	A1
		[5 12 mark
(2)	Notes	
(a)	M1: Evidence of differentiation, so $x^n \to x^{n-1}$ at least once so $x^1 \to 1$ or x^0 or $x^{\frac{1}{2}} \to x^{-\frac{1}{2}}$ not just $5 \to A1$: Any two of the three terms correct – do not need to see zero – the 5 disappearing is sufficient; need not	
	be simplified. A1: $2 - 4x^{-\frac{1}{2}}$ Both terms correct, and simplified. Do not need to include domain $x > 0$	
(b)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen)	
	M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient . This may be implied by -6 or	m = -6 but
	not y = - 6. Can earn this M mark if they go on to use $m = \frac{1}{6}$ or use their numerical value of $\frac{dy}{dx}$	
	dM1: This depends on previous method mark. Complete method for obtaining the equation of using their tangent gradient and their value for y_1 (obtained from $x = \frac{1}{4}$, allow slip) i.e.	the tangent,
	$y - y_1 = m_T \left(x - \frac{1}{4} \right)$ with their tangent gradient and their y_1	
	or uses $y = mx + c$ with $\left(\frac{1}{4}, \text{ their } y_1\right)$ and their tangent gradient.	
	A1: $y = -6x + 3$ or $y = 3 - 6x$ or $a = -6$ and $b = 3$	
(c)	B1: For the value $2/3$ not $2/3 x$ not $-3/2$ M1: Sets their gradient function dy/dx = their numerical gradient	
	A1: Obtains $x = 9$	
	dM1: Substitutes their x (from gradient equation) into original equation of curve C i.e. original ex A1: $(9, 1)$ or $x = 9$, $y = 1$ or just $y = 1$	pression y
	A1: $(9, -1)$ or $x = 9$, $y = -1$, or just $y = -1$ Special Cases: In (b) Finds normal could get B1 M1 M0 A0 i.e. max of 2/4	
	In (c) Uses perpendicular instead of parallel then award B0 M1 A0 M1 A0 i.e max $2/5$ – see ov	/er

PMT

PMT