

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6663/01)

January 2009 6663 Core Mathematics C1 Mark Scheme

Que: Num	stion Iber	Scheme	Ма	arks
1	(a)	5 (±5 is B0)	B1	(1)
	(b)	$\frac{1}{(\text{their 5})^2}$ or $\left(\frac{1}{\text{their 5}}\right)^2$	M1	
		$=\frac{1}{25}$ or 0.04 $(\pm\frac{1}{25} \text{ is A0})$	A1	(2) [3]
	(b)	M1 follow through their value of 5. Must have reciprocal and square. 5^{-2} is <u>not</u> sufficient to score this mark, unless $\frac{1}{5^2}$ follows this. A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-\frac{2}{3}} = \left(-\frac{1}{5}\right)^2 = \frac{1}{25}$ scores M1 A0 $125^{-\frac{2}{3}} = -\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ scores M1 A0. Correct answer with no working scores both marks. <u>Alternative</u> : $\frac{1}{\sqrt[3]{125^2}}$ or $\frac{1}{(125^2)^{\frac{1}{3}}}$ M1 (reciprocal and the correct number squared) $\left(=\frac{1}{\sqrt[3]{15625}}\right)$ $=\frac{1}{25}$ A1		

Question Number	Scheme	Marks
2	$(I =)\frac{12}{6}x^6 - \frac{8}{4}x^4 + 3x + c$ = $2x^6 - 2x^4 + 3x + c$ M1 for an attempt to integrate $x^n \to x^{n+1}$ (i.e. ax^6 or ax^4 or ax , where <i>a</i> is any non-zero constant). Also, this M mark can be scored for just the + <i>c</i> (seen at some stage), even if no other	M1 A1A1A1 [4]
	terms are correct. $1^{st} A1 \text{ for } 2x^6$ $2^{nd} A1 \text{ for } -2x^4$ $3^{rd} A1 \text{ for } 3x + c \text{ (or } 3x + k \text{, etc., any appropriate letter can be used as the constant)}$ Allow $3x^1 + c$, but <u>not</u> $\frac{3x^1}{1} + c$. Note that the A marks can be awarded at separate stages, e.g. $\frac{12}{6}x^6 - 2x^4 + 3x$ scores $2^{nd} A1$	
	$\frac{6}{12}x^{6} - 2x^{4} + 3x + c \text{scores } 3^{\text{rd}} \text{ A1}$ $2x^{6} - 2x^{4} + 3x \text{scores } 1^{\text{st}} \text{ A1 (even though the } c \text{ has now been lost).}$ Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen.	
	Ignore wrong notation if the intention is clear, e.g. Answer $\int 2x^6 - 2x^4 + 3x + c dx$.	

Question Number	Scheme	Marks
3	$\sqrt{7}^2 + 2\sqrt{7} - 2\sqrt{7} - 2^2$, or 7 - 4 or an exact equivalent such as $\sqrt{49} - 2^2$	M1
	= 3	A1
		[2]
	 M1 for an expanded expression. At worst, there can be <u>one wrong term</u> and <u>one wrong sign</u>, or <u>two wrong signs</u>. e.g. 7 + 2√7 - 2√7 - 2 is M1 (one wrong term -2) 7 + 2√7 + 2√7 + 4 is M1 (two wrong signs + 2√7 and +4) 7 + 2√7 + 2√7 + 2 is M1 (one wrong term +2, one wrong sign + 2√7) √7 + 2√7 - 2√7 + 4 is M1 (one wrong term √7, one wrong sign + 4) √7 + 2√7 - 2√7 - 2 is M0 (two wrong terms √7 and -2) 7 + √14 - √14 - 4 is M0 (two wrong terms √14 and - √14) If only 2 terms are given, they must be correct, i.e. (7 - 4) or an equivalent unsimplified version to score M1. The terms can be seen <u>separately</u> for the M1. Correct answer with <u>no working</u> scores both marks. 	

PMT	

Question Number	Scheme	Marl	<s< th=""></s<>
4	$\left(f(x) = \right)\frac{3x^3}{3} - \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - 7x(+c)$	M1	
	$= x^{3} - 2x^{\frac{3}{2}} - 7x (+c)$ f(4) = 22 $\implies 22 = 64 - 16 - 28 + c$ c = 2	A1A1 M1 A1cso	(5) [5]
	1 st M1 for an attempt to integrate $(x^3 \text{ or } x^{\frac{3}{2}} \text{ seen})$. The <i>x</i> term is insufficient for this mark and similarly the + <i>c</i> is insufficient. 1 st A1 for $\frac{3}{3}x^3$ or $-\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) 2 nd A1 for all three <i>x</i> terms correct and simplified (the simplification may be seen later). The + <i>c</i> is not required for this mark. Allow $-7x^1$, but <u>not</u> $-\frac{7x^1}{1}$.		
	2 nd M1 for an attempt to use $x = 4$ and $y = 22$ in a changed function (even if differentiated) to form an equation in <i>c</i> . 3 rd A1 for $c = 2$ with no earlier incorrect work (a final expression for $f(x)$ is not required).		

Question Number	Scheme	Marks
5 (a)	Shape \bigwedge , touching the <i>x</i> -axis at its maximum. Through (0,0) & -3 marked on <i>x</i> -axis, or (-3,0) seen. Allow (0, -3) if marked on the <i>x</i> -axis. Marked in the correct place, but 3, is A0. Min at (-1,-1)	M1 A1 A1 (3)
(b)	Correct shape \bigvee (top left - bottom right) Through -3 and max at (0, 0). Marked in the correct place, but 3, is B0. Min at (-2, -1)	(5) B1 B1 (3) [6]
(a)	 M1 as described above. Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 1st A1 for curve passing through -3 and the origin. Max at (-3,0) 2nd A1 for minimum at (-1,-1). Can simply be indicated on sketch. 	
(b)	 1st B1 for the correct shape. A negative cubic passing from top left to bottom right. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 2nd B1 for curve passing through (-3,0) having a max at (0,0) and no other max. 3rd B1 for minimum at (-2, -1) and no other minimum. If in correct quadrant but labelled, e.g. (-2,1), this is B0. In each part the (0, 0) does <u>not</u> need to be written to score the second mark having the curve pass through the origin is sufficient. The last mark (for the minimum) in each part is dependent on a sketch being attempted, and the sketch must show the minimum in approximately the correct place (not, for example, (-2, -1) marked in the wrong quadrant). The mark for the minimum is <u>not</u> given for the coordinates just marked on the axes <u>unless</u> these are clearly linked to the minimum by vertical and horizontal lines. 	

Question Number	Scheme	Marks
6 (a)	$2x^{\frac{3}{2}}$ or $p = \frac{3}{2}$ (<u>Not</u> $2x\sqrt{x}$)	B1
	$-x$ or $-x^1$ or $q=1$	B1 (2)
(b)	$\left(\frac{dy}{dx}\right) = 20x^3 + 2 \times \frac{3}{2}x^{\frac{1}{2}} - 1$	M1
	$2x^{\frac{3}{2}} \text{or} p = \frac{3}{2} (\underline{\text{Not}} \ 2x\sqrt{x} \)$ -x or -x ¹ or q = 1 $\left(\frac{dy}{dx}\right) 20x^3 + 2 \times \frac{3}{2}x^{\frac{1}{2}} - 1$ = $\underline{20x^3 + 3x^{\frac{1}{2}} - 1}$	A1A1ftA1ft (4) [6]
(a)	$1st B1 for p = 1.5 ext{ or exact equivalent} 2nd B1 for q = 1$	
(b)	M1 for an attempt to differentiate $x^n \to x^{n-1}$ (for any of the 4 terms) 1 st A1 for $20x^3$ (the -3 must 'disappear')	
	2^{nd} A1ft for $3x^{\frac{1}{2}}$ or $3\sqrt{x}$. Follow through their <i>p</i> but they must be differentiating $2x^p$, where <i>p</i> is a <u>fraction</u> , and the coefficient must be simplified if necessary. 3^{rd} A1ft for -1 (<u>not</u> the unsimplified $-x^0$), or follow through for correct differentiation of their $-x^q$ (i.e. coefficient of x^q is -1). If ft is applied, the coefficient must be simplified if necessary.	
	'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common	
	factors. Only a single $+$ or $-$ sign is allowed (e.g. $ -$ must be replaced by $+$).	
	If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b).	
	<u>Multiplying</u> by \sqrt{x} : (assuming this is a restart)	
	e.g. $y = 5x^4 \sqrt{x} - 3\sqrt{x} + 2x^2 - x^{\frac{3}{2}}$ $\left(\frac{dy}{dx}\right) = \frac{45}{2} x^{\frac{7}{2}} - \frac{3}{2} x^{-\frac{1}{2}} + 4x - \frac{3}{2} x^{\frac{1}{2}}$ scores M1 A0 A0 (<i>p</i> not a fraction) A1ft.	
	Extra term included: This invalidates the final mark.	
	e.g. $y = 5x^4 - 3 + 2x^2 - x^{\frac{3}{2}} - x^{\frac{1}{2}}$ $\left(\frac{dy}{dx}\right) = 20x^3 + 4x - \frac{3}{2}x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}}$ scores M1 A1 A0 (<i>p</i> not a fraction) A0.	
	<u>Numerator and denominator differentiated separately</u> : For this, neither of the last two (ft) marks should be awarded.	
	<u>Quotient/product rule</u> : Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

Question Number	Scheme	Mark	(S
7 (a)	$b^2 - 4ac > 0 \Rightarrow 16 - 4k(5-k) > 0$ or equiv., e.g. $16 > 4k(5-k)$	M1A1	
	So $k^2 - 5k + 4 > 0$ (Allow any order of terms, e.g. $4 - 5k + k^2 > 0$) (*)	A1cso	(3)
(b)	<u>Critical Values</u> $(k-4)(k-1) = 0$ $k = \dots$ k = 1 or 4	M1 A1	
	$\kappa = 1.014$ Choosing "outside" region	M1	
	$\underline{k < 1}$ or $\underline{k > 4}$	A1	(4) [7]
	For this question, ignore (a) and (b) labels and award marks wherever correct work is se	een.	
(a)	M1 for attempting to use the discriminant of the initial equation (> 0 not required, but of <i>a</i> , <i>b</i> and <i>c</i> in the correct formula is required). If the formula $b^2 - 4ac$ is seen, at least 2 of <i>a</i> , <i>b</i> and <i>c</i> must be correct. If the formula $b^2 - 4ac$ is <u>not</u> seen, all 3 (<i>a</i> , <i>b</i> and <i>c</i>) must be correct. This mark can still be scored if substitution in $b^2 - 4ac$ is within the quadratic for This mark can also be scored by comparing b^2 and $4ac$ (with substitution). However, use of $b^2 + 4ac$ is M0. 1 st A1 for fully correct expression, possibly unsimplified, with > symbol. NB must ap the last line, even if this is simply in a statement such as $b^2 - 4ac > 0$ or 'discriminn Condone a bracketing slip, e.g. $16 - 4 \times k \times 5 - k$ if subsequent work is correct and condone a bracketing slip if otherwise correct and convincing. 2^{nd} A1 for a fully correct derivation with no incorrect working seen. Condone a bracketing slip if otherwise correct and convincing.	ormula. pear befo ant posit	ore ive'.
(b)	 1st M1 for attempt to solve an appropriate 3TQ 1st A1 for both k = 1 and 4 (only the critical values are required, so accept, e.g. k > 1 a 2nd M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark listing every k < 1, 1 < k < 4, k > 4 is M0. 2nd A1 for correct answer only, condone "k < 1, k > 4" and even "k < 1 and k > 4", but "1 > k > 4" is A0. ** Often the statement k > 1 and k > 4 is followed by the correct final answer. Allow fulse seeing 1 and 4 used as critical values gives the first M1 A1 by implication. In part (b), condone working with x's except for the final mark, where the set of values of values of k (i.e. 3 marks out of 4). 	ything 11 marks.	

Questi Numbe		Scheme	Mar	'ks
	(a) (b)	$(a=) (1+1)^2 (2-1) = 4$ (1, 4) or $y = 4$ is also acceptable	B1	(1)
	(0)	(i) Shape \checkmark or \checkmark anywhere	B1	
		$\begin{array}{c} 2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	B1	
		(2, 0) and $(0, 2)$ can be 2 on axes	B1	
		(ii) Top branch in 1^{st} quadrant with 2 intersections	B1	
		Bottom branch in 3 rd quadrant (ignore any intersections)	B1	(5)
	(c)	(2 intersections therefore) $\underline{2}$ (roots)	B1ft	(1) [7]
((b)	 1st B1 for shape or Can be anywhere, but there must be one max. and one min. and no further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 2nd B1 for minimum at (-1,0) (even if there is an additional minimum point shown) 3rd B1 for the sketch meeting axes at (2, 0) and (0, 2). They can simply mark 2 on the axes. The marks for minimum and intersections are dependent upon having a sketch. Answers on the diagram for min. and intersections take precedence over answers seen elsewhere. 		
		 4th B1 for the branch fully within 1st quadrant having 2 intersections with (not just 'touching') the other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes, and when the curve looks like two straight lines with a small curve at the join. Allow, for example, shapes like these: 		arc
		 5th B1 for a branch fully in the 3rd quadrant (ignore any intersections with the other curve for this branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes. 		
	(c)	B1ft for a statement about the number of roots - compatible with their sketch. No sket The answer 2 <u>incompatible with the sketch</u> is B0 (ignore any algebra seen). If the sketch shows the 2 correct intersections <u>and</u> , for example, one other interse answer here should be 3, not 2, to score the mark.		

Que Num	stion Iber	Scheme	Marks
9	(a) (b)	a + 17d = 25 or equiv. (for 1 st B1), $a + 20d = 32.5$ or equiv. (for 2 nd B1), <u>Solving</u> (Subtract) $3d = 7.5$ so $d = 2.5$ $a = 32.5 - 20 \times 2.5$ so $a = -17.5$ (*)	B1, B1 (2) M1 A1cso (2)
	(c)	$2750 = \frac{n}{2} \Big[-35 + \frac{5}{2} (n-1) \Big]$ $\{ 4 \times 2750 = n(5n-75) \}$ $4 \times 550 = n(n-15)$ $\underline{n^2 - 15n = 55 \times 40} (*)$	M1A1ft M1 A1cso (4)
	(d)	$n^{2} - 15n - 55 \times 40 = 0$ or $n^{2} - 15n - 2200 = 0$ (n - 55)(n + 40) = 0 $n =n = 55 (ignore - 40)$	M1 M1 A1 (3) [11]
	(a) Mark parts (a) and (b) as 'one part', ignoring labelling. (a) Alternative: $1^{\text{st}} \text{B1:} d = 2.5 \text{ or equiv.or } d = \frac{32.5 - 25}{3}$. No method required, but $a = -17.5$ must not be a		t be assumed.
	 (b) 2nd B1: Either a +17d = 25 or a + 20d = 32.5 seen, or used with a value of d or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms. M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution for without assuming a = -17.5 In alternative scheme: for using a d value to find a value for a. 		
		A1: Finding correct values for both <i>a</i> and <i>d</i> (allowing equiv. fractions such as $d = \frac{15}{6}$), incorrect working seen.	with no
	(c)	In the main scheme, if the given <i>a</i> is used to find <i>d</i> from one of the equations, then allo both values are <u>checked</u> in the 2^{nd} equation.	
 1st M1 for attempt to form equation with correct S_n formula and 2750, with values of 1st A1ft for a correct equation following through their d. (d) 2nd M1 for expanding and simplifying to a 3 term quadratic. 2nd A1 for correct working leading to printed result (no incorrect working seen). 			
		1 st M1 forming the correct $3TQ = 0$. Can condone missing "= 0" but all terms must be First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to 2^{nd} M1 for attempt to solve 3TQ, by factorisation, formula or completing the square (see marking principles at end of scheme). If this mark is earned for the 'completing method or if the factors are written down directly, the 1 st M1 is given by implice A1 for <i>n</i> = 55 dependent on both Ms. Ignore – 40 if seen. <u>No working</u> or 'trial and improvement' methods in (d) score all 3 marks for the answer otherwise no marks.	o be scored). ee general g the square' cation.

Numb	tion ber	Scheme	Marks
10	(a)	$y-5 = -\frac{1}{2}(x-2)$ or equivalent, e.g. $\frac{y-5}{x-2} = -\frac{1}{2}$, $y = -\frac{1}{2}x+6$	M1A1, A1cao (3
	(b)	$x = -2 \Rightarrow y = -\frac{1}{2}(-2) + 6 = 7$ (therefore <i>B</i> lies on the line)	B1 (*
		(or equivalent verification methods)	
	(c)	$(AB^{2} =) (2 - 2)^{2} + (7 - 5)^{2}, = 16 + 4 = 20, AB = \sqrt{20} = 2\sqrt{5}$	M1, A1, A1 (;
	(d)	<i>C</i> is $(p, -\frac{1}{2}p+6)$, so $AC^2 = (p-2)^2 + \left(-\frac{1}{2}p+6-5\right)^2$	M1
	(9)	Therefore $25 = p^2 - 4p + 4 + \frac{1}{4}p^2 - p + 1$	M1
		$25 = 1.25p^2 - 5p + 5$ or $100 = 5p^2 - 20p + 20$ (or better, RHS simplified to 3 terms)	A1 A1cso (4
		Leading to: $0 = p^2 - 4p - 16$ (*)	[11]
	(a) (b)	 M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. y - y₁ = m(x - x₁)) is seen, otherwise M0. If (2, 5) is substituted into y = mx + c to find c, the M mark is for attempting this and the 1st A mark is for c = 6. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through (-2,7) with gradient -¹/₂ has the same eqn. as found in part (a), 	
		or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases	
	(c)	a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting AB^2 or AB . Allow one slip (sign or number) <u>inside</u> a bracket, i.e. do <u>not</u> allow $(22)^2 - (7 - 5)^2$. 1 st A1 for 20 (condone bracketing slips such as $-2^2 = 4$) 2 nd A1 for $2\sqrt{5}$ or $k = 2$ (Ignore ± here).	
	(d)		
		length of AC^2 or $C_1C_2^2$: e.g. $AC^2 = (2 + 2\sqrt{5} - 2)^2 + (5 - \sqrt{5} - 5)^2$ scores 1 st M1, and 1 st A1 if fully correct. Finding the length of AC or AC^2 for both values of p , or finding C_1C_2 with some evidence of halving (or intending to halve) scores the 2 nd M1. Getting $AC = 5$ for both values of p , or showing $\frac{1}{2}C_1C_2 = 5$ scores the 2 nd A1 (cso).	

Quest Numb		Scheme	Marks
11	(a)	$\left(\frac{dy}{dx}\right) - 4 + 8x^{-2} (4 \text{ or } 8x^{-2} \text{ for } M1 \text{ sign can be wrong})$ $x = 2 \implies m = -4 + 2 = -2$	M1A1 M1
		The first 4 marks <u>could</u> be earned in part (b) $y = 9 - 8 - \frac{8}{2} = -3$	B1
		Equation of tangent is: $y+3 = -2(x-2) \rightarrow y = 1-2x$ (*)	M1 A1cso (6)
	(b)	Gradient of normal = $\frac{1}{2}$	B1ft
		Equation is: $\frac{y+3}{x-2} = \frac{1}{2}$ or better equivalent, e.g. $y = \frac{1}{2}x - 4$	M1A1
	(c)	$(A:) \frac{1}{2}, \qquad (B:) 8$	(3) B1, B1
		Area of triangle is: $\frac{1}{2}(x_B \pm x_A) \times y_P$ with values for all of x_B, x_A and y_P	M1
		$\frac{1}{2}\left(8-\frac{1}{2}\right) \times 3 = -\frac{45}{4}$ or 11.25	A1 (4) [13]
	(a)	1^{st} M1 for 4 or $8x^{-2}$ (ignore the signs). 1^{st} A1 for both terms correct (including signs).	
		2^{nd} M1 for substituting $x = 2$ into their $\frac{dy}{dx}$ (must be different from their y)	
		B1 for $y_P = -3$, but not if clearly found from the given equation of the <u>tangent</u> . 3 rd M1 for attempt to find the equation of tangent at <i>P</i> , follow through their <i>m</i> and y_P . Apply general principles for straight line equations (see end of scheme). <u>NO DIFFERENTIATION ATTEMPTED</u> : Just assuming $m = -2$ at this stage if 2 nd A1cso for correct work leading to printed answer (allow equivalents with 2 <i>x</i> , <i>y</i> , and such as $2x + y - 1 = 0$).	s M0
	(b)	 B1ft for correct use of the perpendicular gradient rule. Follow through their <i>m</i>, but i there must be clear evidence that the <i>m</i> is thought to be the gradient of the tange for an attempt to find normal at <i>P</i> using their changed gradient and their y_P. Apply general principles for straight line equations (see end of scheme). A1 for any correct form as specified above (correct answer only). 	
	(c)	$1^{\text{st}} \text{ B1 for } \frac{1}{2} \text{ and } 2^{\text{nd}} \text{ B1 for 8.}$	
M1 for a full method for the area of triangle <i>ABP</i> . Follow through their x_A, x_B and the mark is to be awarded 'generously', condoning sign errors The final answer must be positive for A1, with negatives in the working condon Determinant: Area = $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1 \end{vmatrix} = \dots$ (Attempt to multiply out require		ned. ired for M1)	
		<u>Alternative</u> : $AP = \sqrt{(2-0.5)^2 + (-3)^2}$, $BP = \sqrt{(2-8)^2 + (-3)^2}$, Area $= \frac{1}{2}AP \times BP = \frac{1}{2}AP$	M1
		Intersections with y-axis instead of x-axis: Only the M mark is available B0 B0 M1 A0.	