

GCE

Edexcel GCE

Core Mathematics C1 (6663)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCE Core Mathematics C1 (6663)

January 2006 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
1.	$x(x^2 - 4x + 3)$ Factor of x. (Allow $(x - 0)$) $= x(x - 3)(x - 1)$ Factorise 3 term quadratic	M1 M1 A1 (3) Total 3 marks
	<u>Alternative:</u> $(x^2 - 3x)(x - 1)$ or $(x^2 - x)(x - 3)$ scores the second M1 (allow \pm for each sign), then $x(x - 3)(x - 1)$ scores the first M1, and A1 if correct. <u>Alternative:</u> Finding factor $(x - 1)$ or $(x - 3)$ by the factor theorem scores the second M1, then completing, using factor x , scores the first M1, and A1 if correct. <u>Factors "split"</u> ; e.g. $x(x^2 - 4x + 3) \Rightarrow (x - 3)(x - 1)$. Allow full marks. <u>Factor x not seen:</u> e.g. Dividing by $x \Rightarrow (x - 3)(x - 1)$. M0 M1 A0. If an equation is solved, i.s.w.	

Question number	Scheme	Marks
2.	(a) $u_2 = (-2)^2 = 4$	B1
	(a) $u_2 = (-2)^2 = 4$ $u_3 = 1, u_4 = 4$ For u_3 , ft $(u_2 - 3)^2$	B1ft, B1
		(3)
	(b) $u_{20} = 4$	B1ft
		(1)
		Total 4 marks
	(b) ft only if sequence is "oscillating".	
	Do not give marks if answers have clearly been obtained from wrong working,	
	e.g. $u_2 = (3-3)^2 = 0$	
	$u_3 = (4-3)^2 = 1$	
	$u_4 = (5-3)^2 = 4$	

Question number	Scheme	Marks
3.	(a) $y = 5 - (2 \times 3) = -1$ (or equivalent verification) (*)	B1
		(1)
	(b) Gradient of <i>L</i> is $\frac{1}{2}$	B1
	$y - (-1) = \frac{1}{2}(x - 3)$ (ft from a <u>changed</u> gradient)	M1 A1ft
	x - 2y - 5 = 0 (or equiv. with integer coefficients)	A1
		(4)
		Total 5 marks
	(a) $y - (-1) = -2(x - 3) \implies y = 5 - 2x$ is fine for B1.	
	Just a table of values including $x = 3$, $y = -1$ is insufficient.	
	(b) M1: eqn of a line through $(3, -1)$, with any numerical gradient (except 0 or ∞)	
	For the M1 A1ft, the equation may be in any form, e.g. $\frac{y - (-1)}{x - 3} = \frac{1}{2}$.	
	Alternatively, the M1 may be scored by using $y = mx + c$ with a numerical gradient and substituting (3, -1) to find the value of <i>c</i> , with A1ft if the value of <i>c</i> follows through correctly from a <u>changed</u> gradient.	
	Allow $x - 2y = 5$ or equiv., but must be integer coefficients.	
	The "= 0" can be implied if correct working precedes.	

Question number	Scheme	Marks
4.	(a) $\frac{dy}{dx} = 4x + 18x^{-4}$ M1: $x^2 \to x \text{ or } x^{-3} \to x^{-4}$	M1 A1
		(2)
	(b) $\frac{2x^3}{3} - \frac{6x^{-2}}{-2} + C$ M1: $x^2 \to x^3$ or $x^{-3} \to x^{-2}$ or $+C$	M1 A1 A1
		(3)
	$\left(=\frac{2x^3}{3}+3x^{-2}+C\right)$ First A1: $\frac{2x^3}{3}+C$	
	Second A1: $-\frac{6x^{-2}}{-2}$	
		Total 5 marks
	In both parts, accept any correct version, simplified or not. Accept 4x ¹ for 4x. <u>+ C in part (a) instead of part (b):</u> Penalise only once, so if otherwise correct scores M1 A0, M1 A1 A1.	

Question number	Scheme	Marks
5.	(a) $3\sqrt{5}$ (or $a = 3$)	B1
		(1)
	(b) $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$	M1
	$(3 - \sqrt{5})(3 + \sqrt{5}) = 9 - 5$ (= 4) (Used as or intended as denominator)	B1
	$(3+\sqrt{5})(p \pm q\sqrt{5}) = \dots 4 \text{ terms } (p \neq 0, q \neq 0)$ (Independent)	M1
	or $(6+2\sqrt{5})(p \pm q\sqrt{5}) = \dots 4$ terms $(p \neq 0, q \neq 0)$	
	[Correct version: $(3 + \sqrt{5})(3 + \sqrt{5}) = 9 + 3\sqrt{5} + 3\sqrt{5} + 5$, or double this.]	
	$\frac{2(14+6\sqrt{5})}{4} = 7+3\sqrt{5}$ 1 st A1: b = 7, 2 nd A1: c = 3	A1 A1
		(5)
		Total 6 marks
	(b) 2^{nd} M mark for attempting $(3 + \sqrt{5})(p + q\sqrt{5})$ is generous. Condone errors.	

Question number	Scheme	Marks
6.	(a) (See below)	M1
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	A1
	3 labelled (or (3, 0) seen)	A1 (3)
	(b) 6 Stretch parallel to y-axis	M1
	1 and 4 labelled (or $(1, 0)$ and $(4, 0)$ seen)	A1
	6 labelled (or (0, 6) seen)	A1 (3)
	(c) Stretch parallel to <i>x</i> -axis	M1
	³ 2 and 8 labelled (or (2, 0) and (8, 0) seen)	A1
	2 8 3 labelled (or (0, 3) seen)	A1 (3)
		Total 9 marks
	(a) M1:	
	(b) M1: with at least two of: (1, 0) unchanged (4, 0) unchanged (0, 3) changed	
	(c) M1: with at least two of: (1, 0) changed (4, 0) changed (0, 3) unchanged	
	Beware: Candidates may sometimes re-label the parts of their solution.	

Question number	Scheme			CS
7.	(a) $500 + (500 + 200) = 1200$ or $S_2 = \frac{1}{2} 2\{1000 + 200\} = 1200$ (B1	(1)	
	(b) Using $a = 500$, $d = 200$ with $n = 7$, 8 or 9 $a + (n-1)d$ or "listing"	,	M1	
	$500 + (7 \times 200) = (\pounds)1900$		A1	(2)
	(c) Using $\frac{1}{2}n\{2a+(n-1)d\}$ or $\frac{1}{2}n\{a+l\}$, or listing and "summing" terms		M1	
	$S_8 = \frac{1}{2}8\{2 \times 500 + 7 \times 200\}$ or $S_8 = \frac{1}{2}8\{500 + 1900\}$, or all terms in list c	orrect	A1	
	$=(\pounds) 9600$		A1	(3)
	(d) $\frac{1}{2}n\{2 \times 500 + (n-1) \times 200\} = 32000$ M1: General S_n , equated to 32	.000	M1 A1	
	$n^2 + 4n - 320 = 0$ (or equiv.) M1: Simplify to 3 term quadrat	tic	M1 A1	
	(n+20)(n-16) = 0 $n =$ M1: Attempt to solve 3 t.q.		M1	
	n = 16, Age is 26		A1cso,A1	lcso
				(7)
			Total 13 I	marks
	(b) Correct answer with no working: Allow both marks.			
	 (c) <u>Some</u> working must be seen to score marks: Minimum working: 500 + 700 + 900 +(+ 1900) = scores M1 (A1) 			
	(d) Allow \geq or > throughout , apart from "Age 26".			
	A common <u>misread</u> here is 3200. This gives $n = 4$ and age 14, and can so M1 A0 M1 A0 M1 A1 A1 with the usual misread rule.	core		
	<u>Alternative:</u> (Listing sums) (500, 1200, 2100, 3200, 4500, 6000, 7700, 9600,) 11700, 14000, 16500, 19200, 22100, 25200, 28500, 32000.	,		
	All values correct A $n = 16$ (perhaps implied by age) A	M3 A2 A1cso		
	Age 26 Age 26 A If there is a mistake in the list, e.g. 16^{th} sum = 32100, possible marks are M3 A0 A0 A0	A1cso e:		
	Alternative: (Trial and improvement)			
	Use of S_n formula with $n = 16$ (and perhaps other values) N Accurately achieving 22000 for $n = 16$			
		A3 A1		

Question number	Scheme	Marks
8.	$\frac{5x^2+2}{x^{\frac{1}{2}}} = 5x^{\frac{3}{2}} + 2x^{-\frac{1}{2}}$ M1: One term correct.	M1 A1
	A1: Both terms correct, and no extra terms.	
	$f(x) = 3x + \frac{5x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} (+C) \qquad (+C \text{ not required here})$	M1 A1ft
	6 = 3 + 2 + 4 + C Use of $x = 1$ and $y = 6$ to form eqn. in $CC = -3$	M1 A1cso
	$3x + 2x^{\frac{5}{2}} + 4x^{\frac{1}{2}} - 3$ (simplified version required)	A1 (ft <i>C</i>) (7)
	[or: $3x + 2\sqrt{x^5} + 4\sqrt{x} - 3$ or equiv.]	
		Total 7 marks
	 For the integration: M1 requires evidence from just one term (e.g. 3 → 3x), but not just "+C". A1ft requires correct integration of at least 3 terms, with at least one of these terms having a fractional power. 	
	For the final A1, follow through on <i>C</i> only.	

Question number		Scheme			Marks	
9.	(a) $-2(P)$, $2(Q)$		(± 2 scores B1 B1)		B1, B1	
						(2)
	(b) $y = x^3 - x^2 - 4x + 4$ (May	be seen earlier)	Multiply out, giving	g 4 terms	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 4$			(*)	M1 A1cso	
						(3)
	(c) At $x = -1$: $\frac{dy}{dx} = 3(-1)^2 - 2(-1)$	(-1) - 4 = 1				
	Eqn. of tangent: $y - 6 =$	1(x - (-1)),	y = x + 7	(*)	M1 A1cso	
						(2)
	(d) $3x^2 - 2x - 4 = 1$ (Equation		ngent")		M1	
	$3x^2 - 2x - 5 = 0$	(3x-5)(x+1) = 0	<i>x</i> =		M1	
	$x = \frac{5}{3}$ or equiv.				A1	
	$y = \left(\frac{5}{3} - 1\right)\left(\frac{25}{9} - 4\right), =$	$\frac{2}{3} \times \left(-\frac{11}{9}\right) = -\frac{22}{27}$ or	or equiv.		M1, A1	
						(5)
					Total 12 n	narks
	(b) <u>Alternative:</u>					
	Attempt to differentiate by	product rule scores	the second M1:			
	$\frac{dy}{dx} = \{(x^2 - 4) \times 1\} + \{(x - 1) \times 1\} $	$) \times 2x \}$				
	Then multiplying out score	es the first M1, with	A1 if correct (cso).			
	(c) M1 requires full method: E	Evaluate $\frac{dy}{dx}$ and use	in eqn. of line throug	h (-1,6),		
	<u>Alternative:</u> Gradient of $y = x + 7$ is 1,		lient need not be 1 for 4 = 1, as in (d) to get $x = -1$.	this M1). M1 A1cso		
	(d) 2^{nd} and 3^{rd} M marks are dep <i>k</i> is a constant.	pendent on starting	with $3x^2 - 2x - 4 = k$, where		

Question number	Scheme			S
10.	(a) $x^2 + 2x + 3 = (x+1)^2$, +2 (a = 1, b = 2)		B1, B1	(2)
	(b) "'U''-shaped parabola		M1	
	Vertex in correct quadra	ant (ft from $(-a, b)$	A1ft	
	(0, 3) (or 3 on y-axis)		B1	(3)
	(c) $b^2 - 4ac = 4 - 12 = -8$		B1	
	Negative, so curve does not cross x-axis		B1	(2)
	(d) $b^2 - 4ac = k^2 - 12$ (May be within the quad	dratic formula)	M1	
	$k^2 - 12 < 0$ (Correct inequality expression i	n any form)	A1	
	$-\sqrt{12} < k < \sqrt{12}$ (or $-2\sqrt{3} < k < 2\sqrt{3}$)		M1 A1	(4)
			Total 11	marks
	(b) The B mark can be scored independently of the sketch.(3, 0) shown on the <i>y</i>-axis scores the B1, but if not shown	on the axis, it is B0.		
	(c) " no real roots" is insufficient for the 2^{nd} B mark. " curve does not touch <i>x</i> -axis" is insufficient for the 2^{nd}	B mark.		
	(d) 2^{nd} M1: correct solution method for <u>their</u> quadratic inequa			
	e.g. $k^2 - 12 < 0$ gives k between the 2 critical values $\alpha < \alpha$	$k < \beta$,		
	whereas $k^2 - 12 > 0$ gives $k < \alpha$, $k > \beta$. " $k > -\sqrt{12}$ and $k < \sqrt{12}$ " scores the final M1 A1, but			
	$"k > -\sqrt{12} \text{ or } k < \sqrt{12} " \text{ scores M1 A0,}$			
	" $k > -\sqrt{12}$, $k < \sqrt{12}$ " scores M1 A0.			
	N.B. $k < \pm \sqrt{12}$ does not score the 2 nd M mark.			
	$k < \sqrt{12}$ does not score the 2 nd M mark.			
	\leq instead of <: Penalise only once, on first occurrence.			

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm p)^2 \pm q \pm c$, $p \neq 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Misreads

(See the next sheet for a simple example).

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A (or B)</u> marks which <u>would have been lost by</u> <u>following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

MISREADS

Question 8. $5x^2$ misread as $5x^3$

8.
$$\frac{5x^3+2}{x^{\frac{1}{2}}} = 5x^{\frac{5}{2}} + 2x^{-\frac{1}{2}}$$
 M1 A0

$$f(x) = 3x + \frac{5x^{\frac{7}{2}}}{\left(\frac{7}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} (+C)$$
 M1 A1ft

$$6 = 3 + \frac{10}{7} + 4 + C$$
 M1

$$C = -\frac{17}{7},$$
 $f(x) = 3x + \frac{10}{7}x^{\frac{7}{2}} + 4x^{\frac{1}{2}} - \frac{17}{7}$ A0, A1