Please check the examination detail	ils below	before ente	ring your candidate	information
Candidate surname			Other names	
Pearson Edexcel International Advanced Level	Centre	e Number	Can	didate Number
Wednesday 2	2 /	/lay	2019	
Morning (Time: 2 hours 30 minute	es)	Paper Re	eference WM	A01/01
Mathematics International Advanced Core Mathematics C12	d Suk	osidiary	y/Advance	d Level
You must have: Mathematical Formulae and Stat	istical	Tables (Blu	ue), calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 16 questions in this question paper. The total mark for this paper is 125.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ►

Answer ALL questions. Write your answers in the spaces provided.

- 1. The 4th term of a geometric series is 125 and the 7th term is 8
 - (a) Show that the common ratio of this series is $\frac{2}{5}$
 - (b) Hence find, to 3 decimal places, the difference between the sum to infinity and the sum of the first 10 terms of this series.

(4)

) gr ⁿ⁻¹	9
	(-r
9x 4-1 = 125	. = 1953.125
$9r^{4-1} = 125$ $9r^{7-1} = 8$	1-0.4
913=125 - 0	- 78125
gr6=8 2.	24.
	Sum of first 10 terms.
D 9r3 125	
	a (1-rn)
r3 - 8 125	1-r·
125	= 1953.175 (1-0.410)
Y= 3 8 125	1-04
V 1 0 -	
r=2 as required.	= 3254.867.
b) sum to infinity.	. Difference =
9	78125-3254.867
(- x	24
find a from eqn ().	= 0.341 (35f)
9r3 = 125.	
$\alpha = 125$ 0.4^3	
a=1953.125-	

- 2. (a) Find the value of a and the value of b for which $\frac{8^x}{2^{x-1}} \equiv 2^{ax+b}$
 - $2^{x-1} = 2$
 - (b) Hence solve the equation $\frac{8^x}{2^{x-1}} = 2\sqrt{2}$

(3)

(3)

(a) $8 = 2^3$

$$8^{2} = 7^{32}$$

- 23x
- $\frac{3x-(x-1)}{2} = 2$
- 2x+1 = ax+b
 - a=2 b=1
- (b) 22x+1 2'.2
 - 2^{2+1} = $2^{3/2}$
 - 2x+1=3
 - 2 K = 1
 - $\chi = \frac{1}{4}$

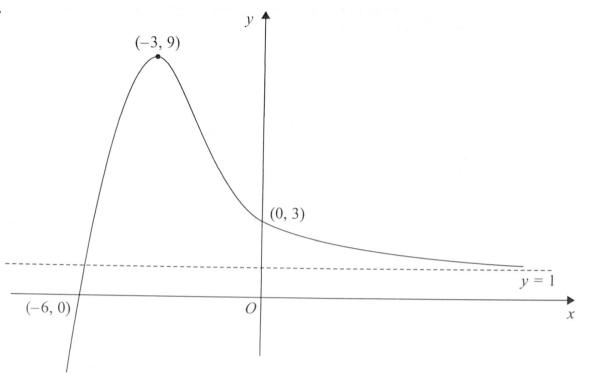
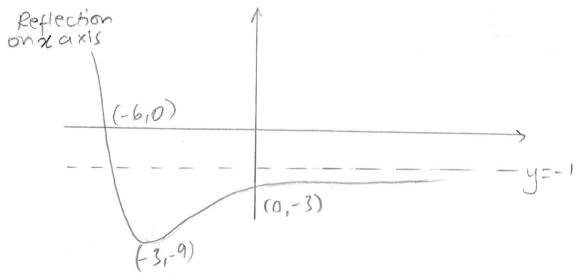


Figure 1

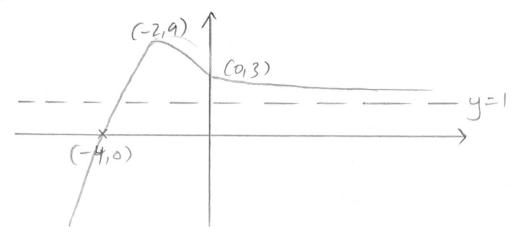
Figure 1 shows a sketch of part of the curve with equation y = f(x). The curve crosses the coordinate axes at the points (-6, 0) and (0, 3), has a stationary point at (-3, 9) and has an asymptote with equation y = 1

On separate diagrams, sketch the curve with equation


(a)
$$y = -f(x)$$

(3)

(b)
$$y = f\left(\frac{3}{2}x\right)$$


(3)

On each diagram, show clearly the coordinates of the points of intersection of the curve with the two coordinate axes, the coordinates of the stationary point, and the equation of the asymptote.

Question 3 continued

Multiply 2-co-ordinates by

Q3

Leave blank

(Total 6 marks)

4. Given that

$$y = 5x^2 + \frac{1}{2x} + \frac{2x^4 - 8}{5\sqrt{x}} \qquad x > 0$$

find $\frac{dy}{dx}$, giving each term in its simplest form.

(6)

in Answer=
$$10 \times -1 \times \frac{1}{2} \times \frac{7}{5} \times \frac{5/2}{5} + \frac{4}{5} \times \frac{-3/2}{5}$$

$$\frac{1}{2x} = \frac{1}{2}x^{-1}$$

$$\frac{dy}{dx} = \frac{1}{2}x^{-1}$$

$$= -\frac{1}{2}x^{-2}$$

$$=\frac{2}{5}x^{3/2}-\frac{8}{5}x^{-1/2}$$

$$= \frac{7 \times 5/2 + 4 \times^{-3/2}}{5}$$

5. A sequence $u_1, u_2, u_3,...$ is defined by

$$u_1 = 1$$

$$u_{n+1} = k - \frac{8}{u_n} \qquad n \geqslant 1$$

where k is a constant.

(a) Write down expressions for u_2 and u_3 in terms of k.

(2)

Given that $u_3 = 6$

(b) find the possible values of k.

(4)

(a) U2	14± √142-4(40)
$V_{1H} = k - 8$ V_{1} $= k - 8 = k - 8 \rightarrow V_{2}$	2 K=4 K=10.
U3 = U2+1	
= K-8 V2	
$\frac{43}{K-8} = \frac{1}{K-8}$	
(b) $k-8=6$.	
(K-8)K-8=6CK-8)	
K2-8K-8=6K-48.	
K2-14K+40=0	

6. (a) Find, in ascending powers of x, up to and including the term $in x^3$, the binomial expansion of

$$\left(1+\frac{1}{4}x\right)^{12}$$

giving each term in its simplest form.

(4)

(b) Hence find the coefficient of x in the expansion of

$$\left(3 + \frac{2}{x}\right)^2 \left(1 + \frac{1}{4}x\right)^{12}$$

(4)

 $(a) \left(1+\frac{1}{4}x\right)^{12}$

$$\frac{(12)(1)^{12}(1x)^{0}}{(1)^{12}(1x)^{0}} + \frac{(12)(1)^{11}(1x)^{1}}{(1x)^{1}} + \frac{(12)(1)^{10}(1x)^{2}}{(1x)^{12}} + \frac{(12)(1)^{10}(1x)^{2}}{(1x)^{12}}$$

 $\left(\frac{12}{3}\right) \left(1\right)^3 \left(\frac{1}{4}\chi\right)^3$

$$=1+3x+33x^2+55x^3...$$

(b)
$$(3+\frac{2}{\pi})^2 = (3+\frac{2}{\pi})(3+\frac{2}{\pi}) = 9+\frac{12}{\pi} + \frac{4}{\pi^2}$$

$$\left(9+12+4\right)\left(1+3x+33x^2+55x^3\right)$$

$$=(9\times3\times)+(12\times33\times^{2})+(4\times55\times^{3})$$

$$=\frac{361}{4}$$

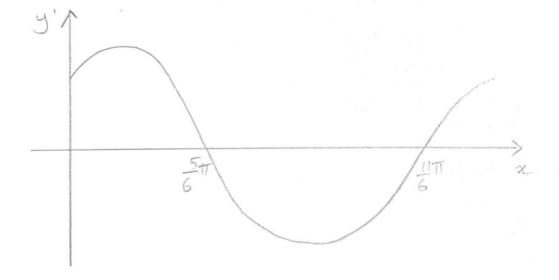
7. (a) Sketch the graph of
$$y = \sin\left(x + \frac{\pi}{6}\right)$$
, $0 \le x \le 2\pi$

Show the coordinates of the points where the graph crosses the x-axis.

(3)

The table below gives corresponding values of x and y for $y = \sin\left(x + \frac{\pi}{6}\right)$.

The values of y are rounded to 3 decimal places where necessary.


x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
у	0.5	0.793	0.966	0.991	0.866

(b) Use the trapezium rule with all the values of y from the table to find an approximate value for

$$\int_{0}^{\frac{\pi}{2}} \sin\left(x + \frac{\pi}{6}\right) \mathrm{d}x$$

Give your answer to 2 decimal places.

(4)

Question 7 continued	
(b) Value of h.	
$\underline{T} - 0 = \underline{T} \rightarrow h.$	
$\frac{\pi - 0}{8} = \frac{\pi}{8} \rightarrow h.$ $\frac{\pi}{4} - \frac{\pi}{8} \rightarrow \frac{\pi}{8}$	
0.5 + 2(0.7937 0.966+	
= 6.866.	
1 × TI × 6.866	
= 1.35	

Leave blank 8.

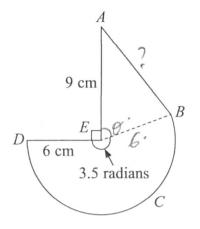


Diagram not drawn to scale

Figure 2

Figure 2 shows the design for a company logo. The design consists of a triangle ABE joined to a sector BCDE of a circle with radius 6 cm and centre E. The line AE is perpendicular to the line DE and the length of AE is 9 cm. The size of angle DEB is 3.5 radians, as shown in Figure 2.

(a) Find the length of the arc BCD.

(2)

Find, to one decimal place,

(b) the perimeter of the logo,

(4)

(c) the area of the logo.

(4)

(a) C=r0-	Using cosine rule.
=6×3·5	$AB^2 = 9^2 + 6^2 - (2x 9x6x\cos 1-21)$
= 21cm	AB ² = 79.11
(b) finding AB	AB= 8.89 4684447.
$\frac{11}{2} + 3.5 + \theta = 2\pi$	Perimeter
0=1.21238898.	6+21+8.89+9 = 44.9cm

c) Area of sectour	
1 r 2 0 .	
=1 x 6 2 x 3.5	
=63	
Area of triangle ABE	
labsino.	
1 x 9 x 6 x Sin [.2]	
= 25.3 (3sf)	
25.3+63	
=88.3cm2	

Leave blank 9.

$$f(x) = (x + k) (3x^2 + 4x - 16) + 32$$
, where k is a constant

(a) Write down the remainder when f(x) is divided by (x + k).

(1)

When f(x) is divided by (x + 1), the remainder is 15

(b) Show that k = 2

(3)

(c) Hence factorise f(x) completely.

	(4
(9) f(-1c).	Fachrising gives,
(-K+K) =0	2 (3x2+10x-8)
: remainder = 32	⇒ x (3n-2) (x+4)
as 6 (3(-k)2+4(-k)-16)=0	
(b) f(-1) = 15.	
(-1+12)(3-4-16)+32=	15
-1+K(-17) =-17.	
-1+k=1 $k=2 as reg.$	
(c) f(x)=(x+2)(3x2+4x-16)+	t32
Expanding gives;	
3x3+4x2-16x+6x2+8x-3	32432
3x3+10x2-8x-	

24

10. The circle C has equation

$$x^2 + y^2 + 4x + py + 123 = 0$$

where p is a constant.

Given that the point (1, 16) lies on C,

- (a) find
 - (i) the value of p,
 - (ii) the coordinates of the centre of C,
 - (iii) the radius of C.

(5)

(b) Find an equation of the tangent to C at the point (1, 16), giving your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(4)

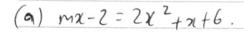
9) (1,16)	(b) Gradient of the 2 points
	(1,16) (-2,12)
) 12+162+4(1)+16p+123=0.	
•	16-12 = 4
16p = -384	12 3
p = -24	0 1
	: Gradient of tangent = -
ii) 22+42-244+123:	-0
1	4-4 = m(x-x0)
$(x+2)^{2}-2^{2}+(y-12)^{2}-12^{2}$	7/2)-0
(x12)2 (12)2 25	y-16=-3(x-1)
$(x+2)^2 + (y-12)^2 = 25$	
* (a) ka > (2 12)	$y = -\frac{3}{4} \times +\frac{3}{4} + 16$
(entre =) (-2,12)	3 2 4 6 7
iii).Radius > 5	$y = -\frac{3}{4}x + \frac{67}{4}$
	4y + 3x - 67=0

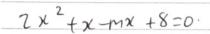
28

11. The straight line *l* has equation y = mx - 2, where *m* is a constant.

The curve C has equation $y = 2x^2 + x + 6$

The line l does not cross or touch the curve C.


(a) Show that m satisfies the inequality


$$m^2 - 2m - 63 < 0$$

(3)

(b) Hence find the range of possible values of m.

(4)

b2-490 CO

1-2m+m2-6460.

$$m^2 - 2m - 6360$$

as required.

sketch

range

2×1

12. (a) Show that

$$\frac{2+\cos x}{3+\sin^2 x} = \frac{4}{7}$$

may be expressed in the form

$$a\cos^2 x + b\cos x + c = 0$$

where a, b and c are constants to be found.

(3)

(b) Hence solve, for $0 \le x < 2\pi$, the equation

$$\frac{2+\cos x}{3+\sin^2 x} = \frac{4}{7}$$

giving your answers in radians to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

0.	
(a) 3+(05x = 4	fince + 1 = cosx = 1
$3+(1-\cos^2 x)^{\frac{1}{7}}$	
^	COSX = 1
from (052x+Sin2x=1	/
	$\chi = \cos^{-1}\left(\frac{1}{4}\right) \frac{s A \times s}{\tau c \times s}$
$7(3+\cos x)=4(3+1-\cos^2 x)$	$\chi = 1.32, 4.97$
21447cosx=16-4cos2x	217-1-32
40052 x + 7605 x + 2=0	
a=4 b=7 c=-2	
(b) $-7 + \sqrt{7^2 - 4(4x-2)}$	
Z×4	
$\cos x = -2 \cos x = 1$	
4	

13. Given that $p = \log_a 9$ and $q = \log_a 10$, where a is a constant, find in terms of p and q,

(a) $\log_a 900$

(3)

(b) $\log_a 0.3$

(3)

(9) p=log 9 9=loga 10.

9×100 = 900.

: log 900 - log 9+log 100

log 9 + log 102

- 1099 + 2109 10

=> p+2q.

(b) 0.3 = 3

109 3

= 109 3 - 109 910.

3= 19 = 9/2

109 9/2

= 1/09/9 - 109/910

 $=\frac{1}{2}p-q$

14. The 5th term of an arithmetic series is 4k, where k is a constant.

The sum of the first 8 terms of this series is 20k + 16

- (a) (i) Find, in terms of k, an expression for the common difference of the series.
 - (ii) Show that the first term of the series is 16 8k

(6)

Given that the 9th term of the series is 24, find

(b) the value of k,

(2)

(c) the sum of the first 20 terms.

(3)

(4) a+4d = 4k · (D Since a=4k-4d.
Sum of 000 8 1000	2 (4K-4d)+7d=5K+4.
Sum of first 8 term	13 20-12
	84 81 21 - 54 11
$\frac{n}{2}$ $\left(2q+(n-1)d\right)$	8K-8d+7d=5K+4.
	•
	3k = d+4.
$=\frac{8}{2}(2a+(8-1)d)$	d=3K-4
2	Comments of the Comments of th
(n) = 11 (26, 121)	20×416 (ii) a=4x-4d
(D = 4 (29+7d) =	(a) a=42 -4a
	=4k-4(3k-4)
From egn (D	= 4K-12k+16
U	= 16-8k 95 reg.
9=4K-4d.	
	(b) 9+8d = 24.
20121 20111	
29+7d = 20K+16	(4000) $(6-8k+8(3k-4)=24$
4	
	16-8K+24K-32
29+7d=5K+4	
	16 K -16 = 24
	16K=40
	K = 2.5/

Question	14	contin	ued
----------	----	--------	-----

$$(c) \frac{n}{2} \left(2a + d(n-1) \right)$$

$$= \frac{20}{2} \left(2(-4) + 3.5(19) \right)$$

Leave blank 15.

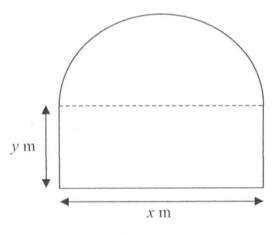


Diagram not drawn to scale

Figure 3

Figure 3 shows the plan view of a garden. The shape of this garden consists of a rectangle joined to a semicircle.

The rectangle has length x metres and width y metres.

The area of the garden is 100 m².

(a) Show that the perimeter, P metres, of the garden is given by

$$P = \frac{1}{4}x(4+\pi) + \frac{200}{x} \qquad x > 0$$

(4)

(b) Use calculus to find the exact value of x for which the perimeter of the garden is a minimum.

(3)

(c) Justify that the value of x found in part (b) gives a minimum value for P.

(2)

(d) Find the minimum perimeter of the garden, giving your answer in metres to one decimal place.

(2)

Area =
$$100m^2$$

$$\frac{1}{2}\pi(\frac{2}{2})^2 = \frac{\pi x^2}{8} \rightarrow \Omega$$

$$\frac{1}{2}\pi(\frac{2}{2})^2 = \frac{\pi x^2}{8} \rightarrow \Omega$$

$$\frac{1}{2}\pi(\frac{2}{2})^2 = \frac{100}{8} \rightarrow \Omega$$

Leave	
blank	

Question 15 continued

Perimeter	2= \$800
2y+x+ longth of arc.	$\chi^2 = 200$ $T/4+1$
arc length= ro.	
J	N= ± 200 V W4+1
= 2 T = TX	V 19471
2 % 42	since x is a distance
10 2	SINCE IS OF OBSTACE
P= 2y +x + Tx	$\alpha > 0$
= 2 (100 - TIX) + TIX +x	
(N 8) 2	.'. x = 200 Tutl
$= \frac{200 - 11 \times + 11 \times + 2}{11 \times 11 \times 11}$	n=10.6 (3sf)
= 200 + Tx + x	$\frac{d^2p}{dx^2} = \frac{4\infty}{\kappa^3}$
= 1 x (11 + 4) + 200 as	at a - [2m
4 / 109	at $x = \sqrt{\frac{200}{P_4H}}$
(b) df = 1T-200+1 dx 4 x2	$d^{2}p = 400$
dx 4 X2	gx (10.6),
	= 0.337
dp=0 at min value.	- 0,334
d k	0.34>0 : min value of
$1+\frac{1}{4}-\frac{200}{x^{2}}=0$	ρ.
	(d.) 22 \\ \frac{200}{\pi_{\alpha+1}}
$\frac{200}{\chi^2} = \frac{\pi}{4}$	
X 4 4 800 X 2	P=1 (10.6) (4+11) + 200
800 x	= 37·8 (3sf)

16.

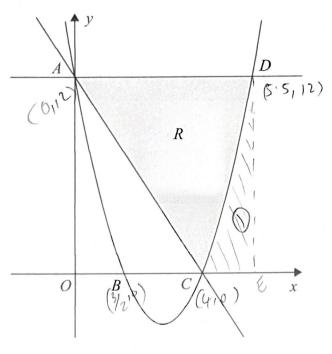


Figure 4

Figure 4 shows a sketch of the curve with equation $y = 2x^2 - 11x + 12$. The curve crosses the y-axis at the point A and crosses the x-axis at the points B and C.

(a) Find the coordinates of the points A, B and C.

(3)

The point D lies on the curve such that the line AD is parallel to the x-axis.

The finite region R, shown shaded in Figure 4, is bounded by the curve, the line AC and the line AD.

(b) Use algebraic integration to find the exact area of R.

(7)

(a) 4 int x=0.	$\chi = 3/2 \chi = 4$
$y = 2(0)^{2} - 11(0) + 12$	$(3/210) \rightarrow 13$
$= (2 - 12) \rightarrow A$	$(4,0) \rightarrow c$
Xint yzo.	
$2x^{2}-11x+12=0$ $11^{\frac{1}{2}}\sqrt{11^{2}-4(2x_{1}2)}$	
2 × 2	

Question 16 continued	D	lank	
		eave	

(b) Finding point D.

Area of A DAC

at D y=12.

= 1 + 4 × 12

1/2= 2×2-112+12.

= 24.

2x2-11x=0

Personal MARE

2 (2x-11)=0

Rectangle OADE

12x5.5 - 7.875-24

x=1/2 Yint.

= 34,125

At D x=1/2

rs.s.

find grea

14

55 2x2-1/x+12

J4

 $= \left[\frac{2 x^3}{2} - \frac{11 x^2}{12 x} + 12 x \right]$

 $= \frac{2(5.5)^{3}-11(5.5)^{2}+12(5.5)}{2}$

 $-\left[\frac{2(4)^{3}-11(4)^{2}+12(4)}{3}\right]$

= 7.875