Candidate Name	Centre Number			Ca	andidate Number					
						0				

GCSE

COMPUTER SCIENCE

COMPONENT 1

Understanding Computer Science

SAMPLE ASSESSMENT MATERIAL

1 hour 45 minutes

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use pencil or gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

The total number of marks is 100.

Some questions will require you to draw on your knowledge from multiple areas of your course of study.

1.	(a)	Describe the purpose of the CPU.					
	(b)	The CPU uses different registers to store data resulting from the fetch-decode-execute cycle.					
		PC CIR ACC MAR MDR					
		Choose two registers and state their purpose.					
		(i)	[1]				
		Register:					
		Purpose:					
		(ii)	[1]				
		Register:					
		Purpose:					

2. Jordan is a gamer considering purchasing a new computer system.

Jordan is considering the following two specifications:

Specification A	Specification B
Processor:	Processor:
 Quad-core 	 Dual-core
• 2.5 GHz	• 3.5 GHz
• 1 MB cache	 2 MB cache
• 4 GB RAM	8 GB RAM
1 TB Hard Disk Drive	 128GB Solid State Drive
136dB Gaming Sound Card	 116dB Gaming Sound Card
1080p Integrated GPU	1080p Dedicated GPU

(a)	Give one reason for choosing Specification A or B based on the following
	aspects alone:

(i)	Number of cores	[1]
(ii)	Main memory	[1]
(iii)	Graphics card	[1]

GCSE COMPUTER SCIENCE Sample Assessment Materials 6

(b)	used either in a Hard Disk Drive or a Solid State Drive.						

[4]

3. (a) State the logical operator used in the following truth table: [1]

Inp	Output	
Α	В	С
0	0	0
1	0	1
0	1	1
1	1	0

.....

(b) **Tick (✓) one box only** to show the Boolean expression that represents the function described by the truth table. [1]

Inp	Output	
Р	Q	R
0	0	0
1	0	1
0	1	0
1	1	0

$$R = P \oplus Q$$

$$R = \overline{P.Q}$$

$$R = P.\overline{Q}$$

$$R = P + Q$$

(c) Complete the truth table.

A	В	A. B	$\overline{A.B}$	\overline{B}	$\overline{A.B} + \overline{B}$
0	0				
0	1				
1	0				
1	1				

4.	(a)	High and low	level languages are used	in programming.

Tick (✓) one box only for each statement that applies to a high level or low level language. [3]

	STATEMENT	HIGH LEVEL	LOW LEVEL			
prog	are easier to understand, learn and ram as commands are similar to natural uage.					
_	require less time for translation into nine code.					
	They are preferred when the execution speed is critical.					
(b)	Describe how each type of program translate	or works.				
	(i) Assembler		[2]			
	(ii) Interpreter		[2]			

5.	(a)	Describe the OSI 7-layer model.			[3]	
	(b)	Name the mis	ssing	g layers in the OSI 7-layer model.	[3]	
		_		LAYER		
			7			
			6	Presentation		
		_	5	Session		
		_	4			
		-	3	Network		
		-	2			
			1	Physical		
	(c)	Describe the purpose of each of the following layers:				
		(i) Physic	cal la	ayer	[2]	
		(ii) Netwo	ork la	ayer	[2]	

6. A local sports club wants to store the details of its members on a computer system. A partially complete data structure design is shown below. [6]

Complete the table, suggesting:

- Three most suitable data types
- Three different methods of validation.

FIELD NAME	DATA TYPE	EXAMPLE DATA	VALIDATION CHECK
Member ID	Integer	12345	
Title	String	Miss	Look-up list
First name	String	Mary	Presence check
Surname	String	Johnson	Presence check
Gender		F	Presence check
Date of birth	Date	23/04/1984	
Address	String	123 Park Avenue	Presence check
Post code	String	E1 7AE	
Telephone number		020 7946 0914	Length check
Membership paid		Yes	Presence check

7.	(a)	Complete the table, converting between denary, binary and hexadecimal	
		numbers as necessary.	[3]

DENARY	BINARY	HEXADECIMAL
	111111002	FC ₁₆
184 ₁₀		B8 ₁₆
54 ₁₀	001101102	

(b)	Show how -92_{10} can be represented using two's complement in an 8-bit register.	[1]
(c)	Perform an arithmetic shift left by one place on the number below and nar the error caused by the shift.	ne [2]
	10110111 ₂ .	
	Error:	

8.	Clearly showing each step, simplify the Boolean expression using Boolean algebra and identities.
	A.(B+A)

9.	A weather station records monthly rainfall figures in millimetres (mm) for a year, starting in January. [10]
	Write an algorithm, using pseudo-code, which will use these twelve monthly rainfall figures as input.
	 The program should output: the total rainfall for the year the mean monthly rainfall for the year the month numbers (1 for January, etc) where the rainfall was above the mean.

10.	Graph	ics can be represe	ented and sto	ed on computer	systems.	
	(a)	Explain how bitm depths.	nap graphics a	are stored and the	e effects of different colour	[4]
	(b)	Lossy and lossle digital graphics. A certain method			ression used to compress ession ratios:	
		Г	Locay	5:2]	
			Lossy Lossless	10:9		
		L				
		Calculate the res	sulting file size	using each com	pression type for a 200 KB	[2]
		Lossy file size:		Lossle	ss file size:	

and ap	plicatio	ons of the World Wide Web.	
(a)	(i)	State the role of a web browser.	[1]
	(ii)	Explain the structure of this URL.	[4]
		https://www.eduqas.co.uk/qualifications/compsci	

The Internet allows access to a wealth of resources and services, such as webpages

11.

(b)	Domain names are used because IP addresses are difficult to remember.				
	Explain how a domain name is used to access a web site including the role of Domain Name System (DNS) servers. [6]				

resour	rces.	
Explai	n how the operating system manages:	
(a)	Multi-tasking	[3]
(b)	Interrupts	[2]
		•••

The operating system is a suite of system programs that manages a computer's

12.

13.	(a)	Tick (\checkmark) one box only for each description that is relevant to the named	
		legislation.	[4]

Description	General Data Protection Regulation	Copyright Designs and Patents Act 1988	Regulation of Investigatory Powers Act 2000	Creative Commons Licensing
Allows interception of communication in the interests of national security.				
When a programmer gives people the right to share and modify their work.				
Ensures protection against unauthorised or unlawful processing of data.				
Protects intellectual property in software development.				
、 ,	principles of the Co	·		[3]
Principle 2	2:			
Principle 3	3:			

14.	Cybersecurity ensures that computer systems are protected against the threats c criminal activity using electronic data.				
	(a)	Describe the characteristics of the following threats to computer systems:			
		(i)	Malware	[2]	
		(ii)	Brute force attacks	[2]	
	(b)	Describe the following ways of protecting against threats:			
		(i)	Penetration testing	[4]	

GCSE COMPUTER SCIENCE Sample Assessment Materials 20

` '	Double authentication	[3]

END OF PAPER