
AQA Computer Science A-Level 4.6.4 Logic gates

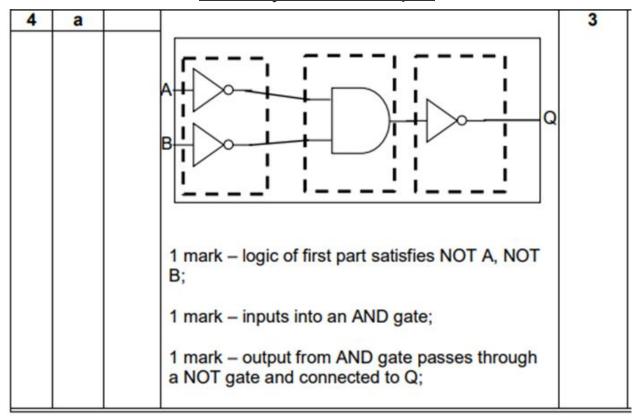
Past Paper Mark Schemes

January 2009 Comp 2

10	(a)		OR			AND	,		
			Input A	Input B	Output	Input A	Input B	Output	
			0	0	0	0	0	0	
			0	1	1	0	1	0	
			1	0	1	1	0	0	
			1	1	1	1	1	1	2
			1 mark per	r correct ta	ble				2
	(b)	(i)	Q = A.B	+ C. B					
	1 mark for A.B or for C. B								
			2 marks for A.B + C.B A AND instead of . A OR instead of +						
			AANDIII	sicad OI .	A OK IIIstea	id OI			2

January 2010 Comp 2

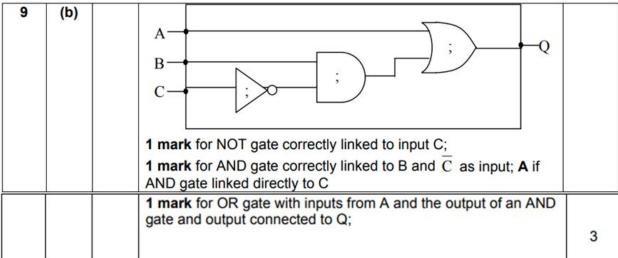
7	(a)		1; A True	
			1; A True	2
			0; A False	3
7	(b)	(i)	AND and NOT	1
7	(b)	(ii)	NAND // NAND gate	
	(-)		R NOT AND	1
7	(c)		Minimise cost of production;	
			Reduce propagation delay//speed up processing;	
			Minimise heat generated;	
			Reduce power consumption;	
				1
			NE simpler to produce/makes circuit simpler	
			NE reduce number of gates in chip	


January 2011 Comp 2

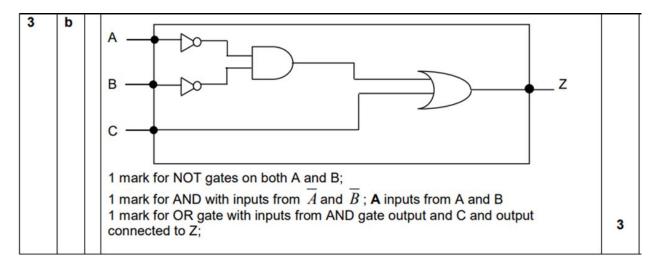
2		6 H	K		
10000		1	1		
	1	1	0		
	1	0	1		
	1	0	1		
	;	;	;		
	1 mark fo	or each co	rrect column	3	

January 2012 Comp 2

2	а		X⊕Y; X\overline{Y} + \overline{X}.Y; A alternative X XOR Y X EOR Y X AND NOT				1	Acceptable notation for symbols : For X.Y allow XAY,XAY,XY
								allow XvY,X∪Y For X allow ~X
2	b		X.\overline{Y}; A alternative	e notations	: X AND NO	от ү;	1	
2	С	1	Inp X 0 0 1 1 One mark for One mark for	0 1 0 1 or C column	0 0 0 1	1 1 0	2	
2	С	II	Addition // a A sum;	dder;			1	

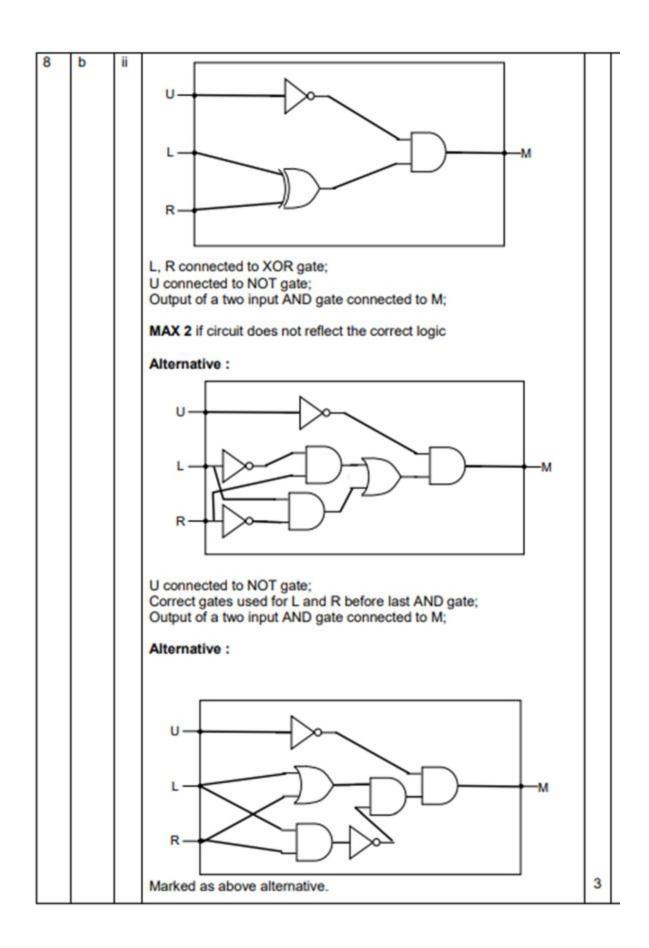

January 2013 Comp 2

						_	b	4
			A + B	В	Α			
			0	0	0			
			1	1	0			
			1	0	1			
			1	1	1			
		umn;	A + B colu	correct	rk for o	1 ma		
	Ā.B	$\overline{A} . \overline{B}$	B	Ā	В	Α		
	0	1	1	1	0	0		
	1	0	0	1	1	0		
8	1	0	1	0	0	1		
	1	0	0	0	1	1		
	1	0 0 being corr correct;	1	0 column	0 1 rk for G	1 1 1 ma 1 mar		

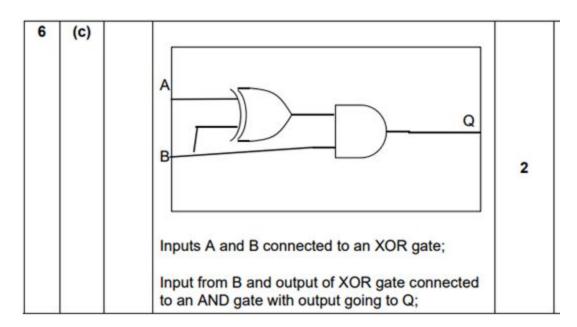

June 2010 Comp 2

(a)		OR Ga	te		XOR Ga	te
	Input A	Input B	Output	Input A	Input B	Output Q
	0	0	0	0	0	0
	0	1	1	0	1	1
	1	0	1	1	0	1
	1	1	1	1	1	0
			<u> </u>	-		<u></u>
			1 mark		Į	1 mark
	1 mark for A True for		correct output se for 0	column		

June 2011 Comp 2


3 a			
	NAND	NOR	
	1	1	
	1	0	
	1	0	
	0;	0;	2

June 2012 Comp 2


Input X	Input Y	The state of the s
0	0	•
	0	0
0	1	0
1	0	0
1	1	1
XOR Gate)	
Input X	Input Y	Output Q
0	0	0
0	1	1
1	0	1
1	1	0
	XOR Gate Input X 0 0	1

8	b	i	(L ⊕R).Ū		Acceptable notation for symbols :
			[Brackets are not necessary]		~ for NOT
			1 mark for use of correct operands (L,R,U); 1 mark for use of XOR with L,R; 1 mark for NOT U anded with other part;		X.Y allow X AND Y, X ₃ Y,X)Y, XY
			alternative : $(L + R)$. $(\overline{L}.\overline{R})$. \overline{U}		X+Y allow X OR Y, X(Y, X*Y
			1 mark for use of correct operands (L,R,U); 1 mark for alternative XOR expression; 1 mark for AND NOT U;		
			alternative : (L. \overline{R} + \overline{L} . R). \overline{U}		
			1 mark for use of correct operands (L,R,U); 1 mark for alternative XOR expression; 1 mark for AND NOT U;	3	

June 2013 Comp 2

Γ	6	(a)	AND;		Γ
		1170	NOR;	3	
			XOR; A. EXOR // EOR // NEQ // exclusive OR;		

June 2016 AS Paper 2

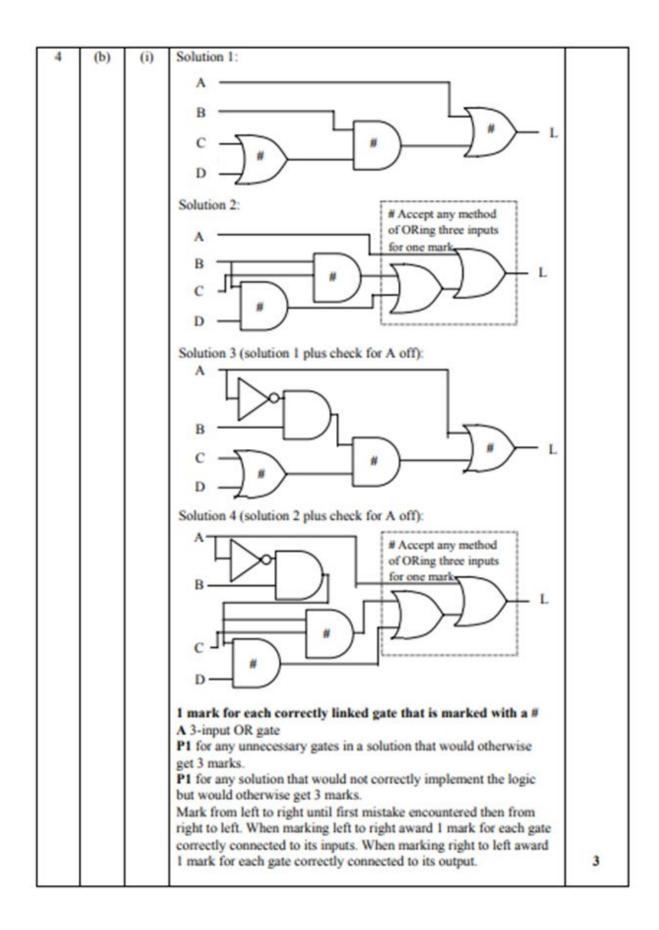
05	1	Mark is for AO1 (knowledge)	1	
		XOR // EOR // Exclusive OR;		

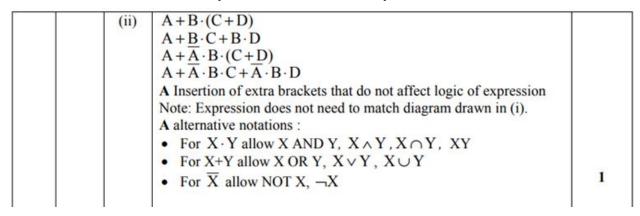
05	2	Mark is for AC	2 (apply)						1
		<u>¯</u> ;								
05	3	Mark is for AC	2 (apply)						1
		C;								
05	4	Marks are for	AO2 (ap	ply)						3
			С	В	Α	Т	S	R		
			0	0	0	0	0	0		
			0	0	1	0	0	1		
			0	1	0	0	1	1		
			0	1	1	0	1	0		
	Mark as follows: 1 mark: column T correct; 1 mark: column S correct;									
		1 mark: colum								
05	5	Mark is for AO2 (analyse)								1
	Use this circuit on the binary number to be subtracted other binary number;								he result to the	
		A. Any equivalent answers R. Number to be added IS negative								

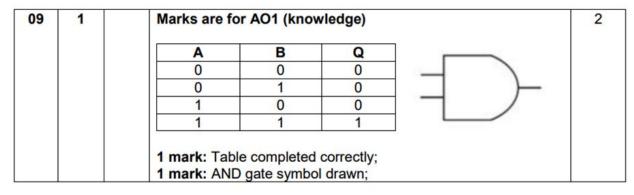
June 2017 AS Paper 2

05	1	Mark is for AO1 (knowledge)	1
		NAND;	
		A. NOT AND	

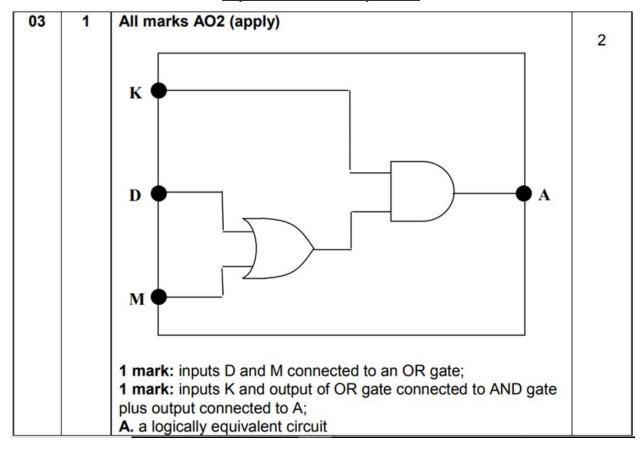
05	2	Marks are for AO2 (apply)									
					1	2	3	4	5		
			A	В	B	$A + \overline{B}$	Ā	$\overline{\mathbf{A}} \cdot \mathbf{B}$	$\overline{\mathbf{A}} \cdot \mathbf{B}$		
			0	0	1	1	1	0	1		
			0	1	0	0	1	1	0		
			1	0	1	1	0	0	1		
		1	1	1	0	1	0	0	1		
		1 mark 1 mark	for colum	n 1 and 3 n 4 corre	ct	t and identi	cal				
		I. order	of columi	ns							


June 2017 Paper 2


		connected to X; MAX 2 if circuit does not fully represent the logic of the system OR the circuit diagram contains any errors	
04	2	All marks AO2 (apply) X = A · B · (C + D) 1 mark: either A · B or C + D somewhere in an incorrect expression 2 marks: fully correct expression A. A logically equivalent expression for 2 marks	2


04	4	Mark is for AO1 (knowledge)				
		Used to store state (of data input) // used as a memory (unit); R. If stated that maintains state when power turned off	1			
04	5	All marks AO1 (knowledge)				
		Input is: Clock / trigger / enable; R. Set / reset	2			
		Used For: State of data input is stored // output is updated to reflect current status of input;				
		A. Synchronise operation of a group of flip-flops R. Changes state/value of flip-flop				

<u>June 2009 Comp 2</u>



Specimen AS Paper 2

Specimen Paper 2

03	2	All marks AO2 (apply)	2
		$A = (D + M) \cdot K$	2
		1 mark: D + M somewhere in expression, even if full expression incorrect	
		1 mark: fully correct expression	
		A. A logically equivalent expression	

03	3	1 mark for AO1 (understanding), 1 mark for AO2 (application) and 1 mark for AO1 (knowledge)	3
		AO1 (understanding): 1 mark: Flip-flop will store the state of its input // Flip-flop acts as memory;	
		AO2 (application): 1 mark: Insert into circuit between the output of the OR gate and the AND gate // after the AND gate;	
		AO1 (knowledge): 1 mark: Clock signal // trigger // signal to indicate when the value (of the input) should be stored/read;	