AQA Computer Science A-Level 4.5.4 Binary number system Past Paper Questions

Additional Specimen AS Paper 2

0 2 . 4	A computer represents numbers using 8-bit two's complement binary.
	Using this representation perform the calculation showing all your working: [2 marks]
	00001001 ₂ 00000011 ₂ x
	Answer:
	A number is to be represented in binary using 6 bits and twos complement.
0 2 . 5	What is the largest possible positive number that can be represented using this representation.
	[1 mark]
0 2 . 1	Additional Specimen Paper 2 A computer represents numbers using 8-bit two's complement binary. Using this representation, perform the decimal calculation $78_{10} - 23_{10}$.
	Show all of your working. [3 marks]

Perform the binary calculation 1011 ₂ * 101 ₂ .
Show all of your working. [2 marks]
The following value is stored in a byte:
If the byte represents an unsigned binary integer, what is its value in decimal? [1 mark]
If the byte represents a two's complement binary integer, what is its value in decimal? [1 mark]
If the byte represents an unsigned fixed point binary number with five bits to the left of the decimal point and three bits to the right of it, what is its value in decimal? [1 mark]

<u>June 2011 Comp 3</u>

	Man	itissa				Expo	onent	
This is a float	ing point re	preser	ntation	of a num	ber:			
1 • 0	1 1	0	0 0	0		0 0	1 0	
	Man	tissa				Expo	onent	
Calculate the	denary equ	Jivalen	t or th	e number	. Sno	w your	working.	
Working:								

Answer:								
Answer:	••••••							
		ating p	oint re	presentat	tion of t	he den	arv value 1	12.75 i
	malised floa							
Write the nomboxes below.	malised floa Space has	s been	provid	ded for yo	ou to do	rough	work, if re	quired
Write the norr boxes below.	malised floa Space has	s been	provid	ded for yo	ou to do	rough	work, if re	quired
Write the norr boxes below. Rough Work:	malised floa Space has	s been	provid	ded for yo	ou to do	rough	work, if re	quired
Write the norrooxes below.	malised floa Space has	s been	provid	ded for yo	ou to do	rough	work, if re	quired

3 (e)	An alternative two's complement format representation is proposed. In the alternative representation 7 bits will be used to store the mantissa and 5 bits will be used to store the exponent.
	Existing Representation (8-bit mantissa, 4-bit exponent):
	Mantissa Exponent
	Proposed Alternative Representation (7-bit mantissa, 5-bit exponent):
	•
	Mantissa Exponent
	Explain the effects of using the proposed alternative representation instead of the existing representation.
	(2 marks)
3 (d)	Floating point numbers are usually stored in normalised form.
	State two advantages of using a normalised representation.
	Advantage 1:
	Advantage 2:
	(2 marks)

<u>June 2012 Comp 3</u>

6	A normalised floating point representation uses a 7-bit mantissa and a 5-bit exponent, both stored using two's complement format .								
6 (a)	In binary, write the most negative number the normalised floating point system in the boxe								
	•								
	Mantissa	Exponent (2 marks)							
6 (b)	This is a floating point representation of a n	umber:							
	1 • 0 1 0 1 0 0	0 0 1 1 0							
	Mantissa	Exponent							
	Calculate the denary equivalent of the numl answer.	per. Show how you have arrived at your							
	Working:								
		700 10 10 10 10 10 10 10 10 10 10 10 10 1							
		(1 mark)							
	Answer:	(1 mark)							

Working:		
•••••		
Answer:		
	Mantissa	Exponent
		Entered Print Services
Mrita the ne	rmaliced fleeting point repres	antation of the negative depart value
		entation of the negative denary value -
	ormalised floating point repres elow. Show how you have ar	
the boxes b	elow. Show how you have ar	
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.
the boxes b	elow. Show how you have ar	rived at your answer.

6 (e)	Table 4 lists three different calculations that might cause an error to occur in a floating	ng
	point system.	

Complete **Table 4** by stating the name of the type of error that may occur for each calculation. You should **not** give the same answer more than once.

Table 4

Calculation	Type of error				
Multiplying two very large numbers together.					
Dividing a number by a very large number.					
Adding together two numbers of very different sizes eg a tiny number to a very big number.	Cancellation *Not in new specification				

June 2016 AS Paper 2

0 2 Figure 1 contains a bit pattern.

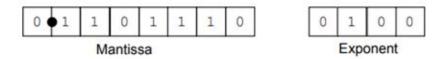
Figure 1

	0	0	1	1	1	0	0	1
- 1	-	-	-	-	-	-	•	-

0 2 . 3	What is the decimal equivalent of the bit pattern shown in Figure 1 if it represents an unsigned fixed-point binary value with four bits before the binary point and four bits after the binary point?							
	[2 mark							
	9							

0 2 . 4	What is the de represents a t								n in Fig	ure 1 if	it [1 mark]
0 2 Fig	<u>J</u> ure 1a and Figu	lune					<u>oer</u>	<u>2</u>			
						re 1a					
		0	0	0	1	0	1	1	1		
					Figu	re 1b					
		0	0	0	0	0	1	1	0		
0 2 . 1	Explain how under the converted.	ustrate									

0 2 . 2	If Figure 1a and binary result of							binar	y integ	ers, what is the [1 mark]
0 2 . 3	If Figure 1a and binary result of						igned	binary	/ integ	ers, what is the
	You must show y	your w	orking).						[2 marks]
	P									-
	()									
0 2 . 4	Indicate clearly o	n Figu	re 2 v	where	the bi	nary p	point m	nust b	e place	ed so that the
					Figu	ıre 2				[1 mark]
		1	0	0	1	1	0	1	1	


June 2017 Paper 2

1 1	A particular 8-bit mantis												an
	Four bit patt and are labe floating poin	elled A, B,	C ar										
						Figu	re 8						
	A	0 • 0	0	0	0	0	0	1	0	0	0	0	
			M	antis	sa					Ехр	onen	t	
	В	0 • 1	0	0	0	0	0	0	1	0	0	0	
			M	antis	sa					Ехр	onen	t	
	С	1 • 0	0	0	0	0	0	0	0	0	1	0	
		100	M	antis	sa		N:		(m)	Exp	onen	t	
	D	1 • 1	0	0	1	1	1	0	1	0	0	0	
			M	antis	sa					Exp	onen	it	
11.1	Shade one negative no				whic	h bit	patte	em (A-D) in F	igure	8 re	500	ts a
		A O	E	3 0		С	0	D	0				iiui kj
1 1.2	Shade one smallest pos					h bit	patte	ern (A–C) in F	igure	8 re	10.70	ts the
		A O	В	3 0		С	0	D	>				

1 1 . 3	The following	is a floa	ating	point	t repr	ese	ntation	of a nu	mbe	r:			
	1 •	0 1	1	0	0	0	0		0	0	1	1	
		M	antis	sa			_	3		Expo	nen	t	
	Calculate the	decima	l equ	iivale	nt of	the	number	r. You	mus	t sho	ow yo		orking. 2 marks]
				A	nsw	er_							
1 1 . 4	Write the non boxes below.							on of th	he de	ecima	al val		5.5 in the
	Answer	•	L	lantis	ssa						Exp	onent	

There can be a loss of precision when a decimal number is stored when using a floating point system.

The closest possible representation of the decimal number 13.8 is shown below.

By converting this bit pattern back into denary it can be seen that the actual number stored is 13.75, not 13.8.

1 1.5	Calculate the absolute error that has occurred. [1 mark]
	Answer
1 1 . 6	Calculate the relative error that has occurred. Express your answer as a percentage to two decimal places. [1 mark]
	Answer

June 2011 Comp 1

0 2 How many different denary numbers can be represented using 8-bit binary?

Use the space below for rough working, then copy the answer to your Electronic Answer Document.

(1 mark)

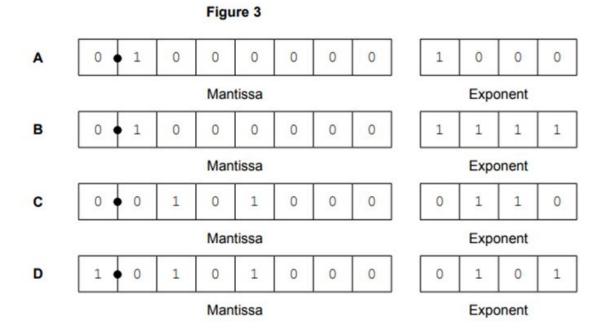
June 2012 Comp 1

Table 1 is a partially complete representation of the rules for adding together two bit values. The first two columns represent the two bit values to add. The first row has been completed and represents the binary addition rule 0 + 0 = 0. Carry occurs when the answer cannot be stored in 1 bit.

Table 1

		Answer	Carry
0	0	0	0
0	1		
1	0		
1	1		

0 1 Complete **Table 1** to show the **Answer** and **Carry** values for the given binary addition rules.


Copy the cells in **Table 1** that contain your answer into the Electronic Answer Document. (3 marks)

June 2013 Comp 1

- 0 2 Represent the denary value 7.625 as an **unsigned binary fixed point** number, with 4 bits before and 4 bits after the binary point. (2 marks)
 - 0 3 Represent the denary value -18 as an 8-bit two's complement binary integer.
 - What is the largest positive denary value that can be represented using 8-bit two's complement binary?
- Describe how **8-bit two's complement binary** can be used to subtract one number from another number. In your answer you must show how the calculation 23 48 would be completed using the method that you have described.

June 2013 Comp 3

- 2 A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.
- 2 (a) Four bit patterns that are stored in this computer's memory are listed in Figure 3 and are labelled with the letters A to D. Three of the bit patterns are valid floating point numbers and one is not.

Complete **Table 1** below. In the **Correct letter (A-D)** column write the appropriate letter from **A** to **D** to indicate which bit pattern in **Figure 3** is an example of the type of value described in the **Value description** column.

Do not use the same letter more than once.

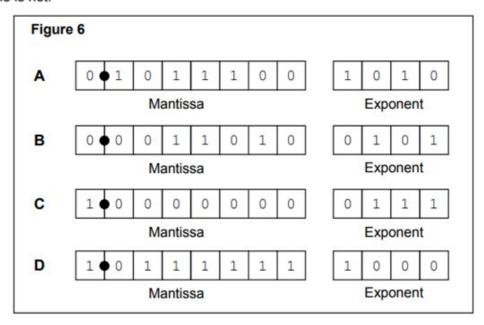
Table 1

Value description	Correct letter (A-D)
A negative value.	
The smallest positive value that can be represented.	
A value that is not valid in the representation because it is not normalised.	

(3 marks)

l o T	1	0	1	0	0	0	0		0	1	1	
			Man	tissa				_		Exp	onent	
Calculate answer.	the	dena	ry equ	ivalen	t of the	numb	er. Sho	ow h	ow y	ou hav	e arriv	/ed
Working:												
			•••••		•••••	•••••	•••••			•••••		
Answer:												
Answer:												
	norms belo	nalise	d float	ting po	oint repour have	resent e arrive	ation of ed at yo	the ur ar	nega	tive de	enary v	/alu
Write the the boxes Working:	norms belo	nalise	d float	ting po	oint repour have	resent e arrive	ation of ed at yo	the ur ar	nega	tive de	enary v	/alu
Write the the boxes Working:	norms belo	nalise	d float	ting po	oint repour have	resent e arrive	ation of ed at yo	the ur ar	nega	tive de	enary v	/alu

2 (d)	There capoint sy			s of pr	ecisio	n wher	a der	nary n	umbe	er is st	ored u	sing th	nis floa	ting
	The clos	sest p	ossibl	e repr	esenta	ation o	f the d	enary	numl	per 6.9) is sh	own be	elow.	
	0	1	1	0	1	1	1	0		0	0	1	1	
				Man	tissa						Expo	onent		
	By conv				tern ba	ack into	dena	ry it ca	an be	seen	that th	ne actu	ial nur	nber
2 (d) (i)	Calculat	e the	absol	lute er	ror tha	t has	occurre	ed.						
		······		•••••										
														(1 mark)
2 (d) (ii)	Calculat	e the	relati	ve erro	or that	has o	ccurre	i.						
	•••••	······		•••••			•••••		•••••					
	•••••	••••••												(1 mark)
2 (d) (iii)	Explain represe				point s	system	used	could	be m	odified	to all	ow a n	nore a	ccurate
											•••••		(·	2 marks)


Specimen AS Paper 2

0 2 . 2	Represent the decimal value 9.375 ₁₀ as an unsigned binary fixed point numb 4 bits before and 4 bits after the binary point.	er, with
		[2 marks]
0 2 . 3	Represent the decimal value -67 ₁₀ as an 8-bit two's complement binary in	teger.
		[2 marks]
0 2 . 4	A computer represents numbers using 8-bit two's complement binary. Using this representation perform the calculation:	[1 mark]
	01001000 ₂ 01100011 ₂ +	
	Answer:	
0 2 . 5	What problem has resulted from performing the calculation using 8-bit two's complement binary?	[1 mark]

Specimen Paper 2

A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.

Four bit patterns that are stored in this computer's memory are listed in **Figure 6** and are labelled **A**, **B**, **C**, **D**. Three of the bit patterns are valid floating point numbers and one is not.

0 8 . 1 Complete **Table 3**. In the Correct letter (**A-D**) column shade the appropriate lozenge **A**, **B**, **C** or **D** to indicate which bit pattern in **Figure 6** is an example of the type of value described in the Value description column.

Do not use the same letter more than once.

[3 marks]

Table 3

Value description	Correct letter (A-D)
A positive normalised value	A O B O C O D O
The most negative value that can be represented	A O B O C O D O
A value that is not valid in the representation because it is not normalised	A O B O C O D O

Mantissa Exponent Calculate the decimal equivalent of the number. Show how you have arrived answer. Answer: Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer. Answer:		0	• 1	0	1	1	0	0	0		0	1	0	1
Answer: Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer.				М	lantis	sa						Exp	onen	t
Answer: Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer.			deci	mal e	equiv	alent	t of th	ne nu	mbe	r. Sho	w how	you l	nave	arriv
Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer.	allswei.													
Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer.														
Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer.	×													
Write the normalised floating point representation of the negative decimal v in the boxes below. Show how you have arrived at your answer.														
in the boxes below. Show how you have arrived at your answer.									An	swer:				
in the boxes below. Show how you have arrived at your answer.														
in the boxes below. Show how you have arrived at your answer.									01					
Answer:														imal
Answer:														imal
Answer:														imal
Answer:														imal
Answer:														imal
Answer:														imal
Answer:														imal
Answer:														imal
Answer:														imal
	in the b	oxes I												imal
	in the b	oxes I												imal
Mantissa Exponent	in the b	oxes I		v. St	how I	how						nswer		

An alternative two's complement format representation is proposed. In the alternative representation 6 bits will be used to store the mantissa and 6 bits will be used to store the exponent.

	Mantissa	Exponent
	Proposed Alternative Representation (6-bit	t mantissa, 6-bit exponent):
	Mantissa	Exponent
. 4	Explain the effects of using the proposed alter existing representation.	rnative representation instead of the
	onding representation.	[2 n
	<u></u>	