PMT

oeeatey Cambridge International Examinations

International Cambridge International Advanced Subsidiary and Advanced Level
AS & A Level

COMPUTER SCIENCE 9608/02

Paper 2 Fundamental Problem-solving and Programming Skills For Examination from 2015
SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 75

This document consists of 7 printed pages and 1 blank page.

CAMBRIDGE

18

)Y International Examinations [Turn over

© UCLES 2012



PMT

1 Dim HomeTeamName As String
Dim AwayTeamName As String
Dim WinningTeamName As String

Dim HomeRuns As Integer
Dim AwayRuns As Integer
Dim RunDifference As Integer

HomeTeamName = Console.ReadLine
HomeRuns = Console.ReadLine
AwayTeamName = Console.ReadLine
AwayRuns = Console.ReadLine

If HomeRuns > AwayRuns Then
WinningTeamName = HomeTeamName
Else
WinningTeamName = AwayTeamName
End If

RunDifference = Math.Abs (HomeRuns - AwayRuns)

Console.WriteLine ("Winning team was " & WinningTeamName
& " who scored " & RunDifference & " more runs")

Mark as follows:

Declaration of name strings [1]
Declaration of scores [1]
Input for name strings [1]
Input of two scores [1]
Calculation of the runs difference [1]
Calculation of the difference [1]
2 x IF or IF-THEN-ELSE used [1]
Stored as WinningTeamName [1]
Output shows team and runs difference [1]

[Total: 9]

© UCLES 2012 9608/02/SM/15



2 (a) (i) [Identifier table:
INTEGER
Explanation — the next number selected

(ii) Pseudocode:
FOR Counter <1 to 6
NextNumber — INT(RND()*50) + 1
OUTPUT NextNumber
ENDFOR / anything to mark the end of the loop
OUTPUT “That completes the draw”

(b) Program code demonstrates:
declaration of variables
correctly formed ‘count-controlled’ loop
clear use of relevant inbuilt function

[1]
[1]

[1]
[1]
[1]

[1]
[1]
[1]

(c) (i) Explanation, e.g., It is not known how many times the loop needs to be executed to

generate 6 different numbers.
(ii) any post-condition or pre-condition loop

(ili) PROCEDURE InitialiseNumberDrawn
FOR Index € 1 TO 50
NumberDrawn [Index] € FALSE
ENDFOR
END PROCEDURE

(iv) CALL InitialiseNumberDrawn
Generated € 0
REPEAT // start of loop
NextNumber — GenerateNumber ()
IF NumberDrawn [NextNumber] = FALSE
THEN
OUTPUT NextNumber
Generated —~ Generated + 1
NumberDrawn [NextNumber] — TRUE
ENDIF
UNTIL Generated = 6 // end of loop
OUPUT “That completes the draw”

© UCLES 2012 9608/02/SM/15

[1]
[1]

[3]

[2]

[1]

[2]
(1]

[Turn over

PMT



(v)

(vi)

© UCLES 2012

NumberDrawn
1 FALSE
2 FALSE
3 TRUE
4 FALSE
5 FALSE
6 FALSE
7 FALSE
8 FALSE
9 TRUE
10 | FALSE
J
39 | FALSE
40 | FALSE
41 | FALSE
42 | TRUE
43 | FALSE
44 | FALSE
45 | FALSE
46 | FALSE
47 | TRUE
48 | FALSE
49 | FALSE
50 | FALSE

Mark as follows:

4 x correct ‘TRUE’ cells
All other cells FALSE

All cells contain something

3 47 9 42

9608/02/SM/15

[1]
[1]
[1]

[1]
[Total: 23]

PMT



3 (a (i)

5

1 the identifier name for the function (chosen by the programmer)
2 the parameter

3 data type (for the parameter)
4

data type for the value returned by the function

(ii) Variable PossibleWinner stores the value returned by the function.

(b) The data must be available each week.
When the program terminates after each weekly run, the data must be saved.

(c) Labelled as follows:

@/V'Vinners

PrizeDraw

A

MemberName

ConfirmedWinningNumber \

[

~

ConfirmedWinningNumber

(1]
[1]
[1]
[1]

[1]

[1]
[1]

MODULE 1

READ
PREVIOUSWINNERS . DAT
data to array Winners

MODULE 2

MODULE 5

— Generate a member number — Search for

— Decide whether this number

iS a new winner

in MEMBERS . DAT
— RETURN MemberName

ConfirmedWinningNumber

NoOfMembers //

Q

Winners array [\ NRUE/FALSE
N

PossibleWinner

MODULE 3

FUNCTION GenerateNumber (NoOfMembers)

(d) (i) Index- INTEGER — Array subscript

© UCLES 2012

9608/02/SM/15

MODULE 4

Search array Winners to
confirm this is a new winner

[Turn over

[6]

[3]

PMT



PMT

6

(ii) Mark as follows:
procedure header [1]
open the file [1]
correct open mode used [1]
index initialised [1]
loop [1]
read line of text [1]
assign to next array element [1]
increment index [1]
test for EOF [1]
output message shown [1]
[max 8]
(e) (i) DataLength ~ LEN (MemberData) [1]
(i) MemberNumber ~ LEFT (MemberData, 4) [1]
(iii) MemberName ~ MID (MemberData, 6, DatalLength - 5) [1]
[Total: 27]
4 (a) () P [1]
(ii) 87 [1]
(b) 84 [1]
(c) PEKOHOX [1]

© UCLES 2012 9608/02/SM/15



(d) (i)

(ii)

© UCLES 2012

INPUT MessageString
LengthMessageString « LEN (MessageString)
NewString « “”
FOR CharacterPosition « 1 TO LengthMessageString
Found « FALSE
Index « 1
REPEAT
IF MessageString[CharacterPosition] = Alphabet[Index]
THEN
SubstituteCharacter « Substitute[Index]
Found « TRUE
ELSE
Index « Index + 1
ENDIF
UNTIL Found
NewString « NewString + SubstituteCharacter
ENDFOR
OUTPUT NewString

Mark as follows:

input of the string

assign NewString as empty

calculation of the string length

outer loop

for ‘length’ iterations

compare individual characters with Alphabet array
inner loop to search for character

controlled with a counter

new substitute character added to NewString
final output of NewString

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

[max 10]

The code to search the Alphabet array can be avoided. / The ASCII codes for the letters

are in sequence.

Example — index position for any character is ASC (<char>) -64

[2]

[Total: 16]

9608/02/SM/15

PMT



PMT

8

BLANK PAGE

© UCLES 2012 9608/02/SM/15





