

This document consists of 15 printed pages.

© UCLES 2019 [Turn over

Cambridge Assessment International Education
Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE 9608/21
Paper 2 Written Paper October/November 2019

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most
Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level
components.

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 2 of 15

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit

is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these

features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 3 of 15

Question Answer Marks

1(a)(i) One mark for each feature:

1. meaningful / sensible identifier names // use of Camel case for identifier
names // use of constants

2. blank lines / white space
3. comments

3

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 4 of 15

Question Answer Marks

1(a)(ii) 5Mark as follows:
• One mark for START and END
• One mark per area outlined

At least one decision box label (YES/NO) must be
present

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 5 of 15

Question Answer Marks

1(b)(i) One mark per row

Example value Data type

"NOT TRUE" STRING

− 4.5 REAL

NOT FALSE BOOLEAN

132 INTEGER

4

1(b)(ii)

One mark per row

Expression Evaluates to

LEFT("Start", 3) & RIGHT("Apple", 3) "Staple"

MID("sample", 3, 5) ERROR

NUM_TO_STRING(12.3 * 2) "24.6"

INT(STRING_TO_NUM("53.4")) + 7 60

4

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 6 of 15

Question Answer Marks

 2(a) One mark for each feature:

1. Module hierarchy
2. The parameters that are passed (between modules) // the module interface
3. Selection / Decisions (which modules are executed)
4. Iteration / Repetition

 4

2(b) One mark for name and one mark for explanation.

Example:

• PrettyPrint // Colour coding
• Colour coding of command words / key words

• Expand and collapse code blocks
• Allows programmer to focus on a section of code // allows quicker navigation

of the code

• Auto(matic) indentation
• Allows the programmer to clearly see the different code sections / easier to

see the code structure

Accept suitable alternatives

2

2(c) One mark for identification, one mark for description:

• By reference / ref
• The address of / pointer to the parameter is passed to the subroutine // if the

parameter value is changed in the subroutine this changes the original value

2

2(d) One mark per bullet point:

• Changes made to // Updating // Editing a program / algorithm / data structure

/ software / system
• ...as a result of changes to requirements / specification / legislation / available

technology

2

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 7 of 15

Question Answer Marks

3 One mark per row: Answer

The number of the line containing a variable being
i t d

24 / 26 / 28

 The range of line numbers containing a pre-condition
 loop

20 – 30

The number of initialisation statements 3

The number of the line containing a logical operator 20

The range of line numbers containing a selection
statement

 22 - 27 /
32 - 37

The name of a built-in function MID / LENGTH

The name of a parameter InString / Index

7

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 8 of 15

Question Answer Marks

4(a) One mark for process name, max 3 for structured English.

Process:
• Stepwise Refinement / Top-down design

Structured English:
• Check that character is between 'A' and 'Z'
• Produce unique array index for this character
• Increment this array element

4

4(b) DECLARE Index : INTEGER
 DECLARE Count : INTEGER

 FOR Count ← 1 TO LENGTH(InString)
 NextChar ← UCASE(MID(InString, Count, 1))
 IF NextChar >= 'A' AND NextChar <= 'Z'
 THEN
 Index ← ASC(NextChar) – 64
 Result[Index] ← Result[Index] + 1
 ENDIF
 ENDFOR

 FOR Index ← 1 TO 26

 OUTPUT "Letter " & CHR(Index + 64) & " : "
 & NUM_TO_STRING(Result[Index])
 ENDFOR

One mark for each of the following (max 7):

1 First loop from 1 to length of InString:
2 Extract each character in turn in a loop
3 Check that character is alphabetic (must cater for lower & upper case) in a

 loop
4 Obtain array index using ASC() - 64 in a loop
5 Increment element of Result array in a loop
6 Second loop from 1 to 26:
7 Attempt to OUTPUT character A to Z and corresponding count in a loop
8 Fully complete OUTPUT including any necessary type conversion in a loop

 7

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 9 of 15

Question Answer Marks

5(a) One mark for each point.

A valid string must contain:

• At least two // more than one upper case character(s)
• At least five // more than four lower case character(s)
• More digit characters than 'other' characters

3

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 10 of 15

Question Answer Marks

5(b)(i) One mark for each area as outlined:

Index NextChar Upper Lower Digit Other

 0 0 0 0

1 'J' 1

2 'i' 1

3 'm' 2

4 '+' 1

5 'S' 2

6 'm' 3

7 'i' 4

8 't' 5

9 'h' 6

10 '*' 2

11 '9' 1

12 '9' 2

5

5(b)(ii) One mark per bullet point:

• Returned value is FALSE
• Digit – Other is not greater than zero // Number of Digit same as

Other

2

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 11 of 15

Question Answer Marks

6(a) To retain data when the computer is shut down / turned off // after the program
ends

Accept equivalent answer.

1

6(b) 'Pseudocode' solution included here for development and clarification of mark
scheme.
Programming language example solutions appear in the Appendix.

FUNCTION SearchFileNtoZ(AccNum : STRING) RETURNS BOOLEAN
 DECLARE FileData : STRING
 DECLARE Found : BOOLEAN
 CONSTANT SearchFile = "UserListNtoZ.txt"
 Found ← FALSE

 OPENFILE SearchFile FOR READ

 WHILE NOT EOF(SearchFile) AND NOT Found

 READFILE SearchFile, FileData
 IF AccNum & '*' = LEFT(FileData, LENGTH(AccNum)+ 1)
 THEN
 Found ← TRUE
 ENDIF

 ENDWHILE

 CLOSEFILE SearchFile

 RETURN Found

ENDFUNCTION

One mark for each of the following:

1. Function heading and ending, (ignore parameter) and returned BOOLEAN
2. File OPEN UserListNtoZ.txt in READ mode and CLOSE
3. Conditional loop repeating until EOF() or 'Found'
4. Read a line from the file in a loop
5. Compare the correct number of characters with AccNum in a loop
6. Set termination logic if found in a loop
7. Return Boolean value

7

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 12 of 15

Question Answer Marks

6(c) PROCEDURE FindDuplicates()

 DECLARE Index : INTEGER
 DECLARE FileData : STRING
 DECLARE Continue : BOOLEAN
 DECLARE AccNum : STRING

 Index ← 1 // assuming array is [1:100]
 Continue ← TRUE
 OPENFILE "UserListAtoM.txt" FOR READ

 WHILE NOT EOF("UserListAtoM.txt") AND Continue = TRUE

 READFILE "UserListAtoM.txt", FileData

 IF MID(FileData, 7, 1) = '*' // six character reference
 THEN
 AccNum ← LEFT(FileData, 6)
 ELSE
 AccNum ← LEFT(FileData, 9)
 ENDIF

 IF SearchFileNtoZ(AccNum) = TRUE
 THEN
 IF Index = 101 // is the array already full?
 THEN
 OUTPUT "Error – Array Full"
 Continue ← FALSE
 ELSE
 Duplicates[Index] ← AccNum
 Index ← Index + 1
 ENDIF
 ENDIF

 ENDWHILE

 CLOSEFILE "UserListAtoM.txt"

ENDPROCEDURE

One mark for each of the following (max 8):

1. Declaration and Initialisation of Index and used to index array
Duplicates

2. OPEN file UserListAtoM.txt in READ mode and CLOSE
3. Pre-Condition loop to go through the file until EOF() and early termination

if array full
4. Read line from file and extract account number (AccNum) in a loop
5. Call SearchFileNtoZ (with AccNum) following an attempt at MP4 in a

loop
6. Check if return value is TRUE and if so: in a loop
7. store AccNum in correct array element
8. increment array index following an attempt at MP7
9. If array overflow OUTPUT error message

8

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 13 of 15

Question Answer Marks

6(d)(i) PROCEDURE ClearArray(BYREF ThisArray : ARRAY,
 NumElements : INTEGER, InitVal : STRING)

 DECLARE Index : INTEGER
 FOR Index ← 1 TO NumElements
 ThisArray[Index] ← InitVal
 ENDFOR

ENDPROCEDURE

Mark as follows:
• Procedure header
• Loop
• Assignment within loop

3

6(d)(ii) 'Pseudocode' solution included here for development and clarification of mark
scheme.
Programming language example solutions appear in the Appendix.

CALL ClearArray(Duplicates, 100, "Empty")

Mark as follows:

• Procedure call
• Parameter list (in brackets)

2

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 14 of 15

Program Code Example Solutions

Question 6(b): Visual Basic

Function SearchFileNtoZ(ByVal SearchString As String) As Boolean
 Dim FileData As String
 Dim Found As Boolean

 Found = FALSE

 FileOpen(1, "UserListNtoZ.txt", OpenMode.Input)

 While Not EOF(1) And Not Found

 Filedata = LineInput(1)
 If SearchString & '*' = Left(FileData, Len(SearchString)+1) Then
 Found = TRUE
 End If

 End While

 FileClose(1)

 Return Found

End Function

Question 6(b): Pascal

function SearchFileNtoZ (SearchString : string): boolean;
 var
 FileData : string;
 Found : boolean;
 MyFile : text;

 begin

 Found := FALSE;

 assign(MyFile, "UserListNtoZ.txt");
 reset (Myfile);

 while Not EOF(MyFile) And Not Found do
 begin
 readLn(MyFile, FileData);
 if SearchString + '*' = LeftStr(FileData, length(SearchString)+1)
then
 Found := TRUE;

 end;

 close(MyFile);

 result := Found; // SearchFileB := Found;

 end;

PMT

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2019

© UCLES 2019 Page 15 of 15

Question 6(b): Python

def SearchFileNtoZ(SearchString):
 ## FileData : String
 ## Found : Boolean
 ## MyFile : Text

 Found = False

 MyFile = open("UserListNtoZ.txt", 'r')
 FileData = MyFile.readline()
 while Filedata != "" and not Found :
 if SearchString + '*' == FileData[0: len(SearchString)+1]:
 Found = True

 FileData = MyFile.readline()

 MyFile.close

 return(Found)

Question 6(d)(ii): Visual Basic

Call ClearArray(Duplicates, 100, "Empty") 'Call optional

Question 6(d)(ii): Pascal

ClearArray(Duplicates, 100, 'Empty');

Question 6(d)(ii): Python

ClearArray(Duplicates, 100, "Empty")

PMT

