

OCR Computer Science A Level

2.3.1 Algorithms for the Main Data Structures
Intermediate Notes

www.pmt.education

Specification:

● Stacks
● Queues
● Linked lists
● Trees
● Traversal of trees

○ Depth-first (post-order)
○ Breadth-first

www.pmt.education

Algorithms for the Main Data Structures

Algorithms and data structures go ​hand in hand​. Each data structure has its own
algorithms associated with it, allowing the data to be manipulated in useful ways.

All of the data structures mentioned in these notes are covered in greater detail in the
notes for 1.4.2 Data Structures.

Stacks
Stacks are an example of a ​first in, last out ​(FILO) data structure. They are often
implemented as an array ​and use a​ single pointer ​which keeps track of the top of the stack
(called the top pointer). This points to the element which is​ currently at the top ​of the stack.

 [2]

Top → 5 [1]

 1 [0]

Algorithms for stacks include adding to the stack, removing from the stack and checking
whether the stack is empty/full. These have their own ​ special names ​, as shown in the table
below.

Operation Name

Check size size()

Check if empty isEmpty()

Return top element (but
don’t remove)

peek()

Add to the stack push(element)

Remove top element
from the stack and
return removed element

pop()

www.pmt.education

size()
Size returns the ​number of elements ​on the stack. The pseudocode is as simple as
returning the value of the top pointer plus one (remember that the first element is in
position 0).

size()
return top + 1

isEmpty()
To check whether a stack is empty, we need to check whether the top pointer is​ less than
0​. If it is, then the stack is empty, otherwise there is data in the stack

isEmpty()
if top < 0:

return True
else:

return False
endif

peek()
To return the item at the top of the stack, ​without removing it ​, simply return the item at the
position indicated by the top pointer. For these examples, we’ll assume our stack is an
array called A.

Don’t forget to check that the stack ​has data in it ​before attempting to return data though,
an empty stack could cause errors. It’s useful to use the ​isEmpty​ function here.

peek()
if isEmpty():

return error
else:

return A[top]
endif

push(element)
To add an item to a stack, the new item is​ passed as a parameter ​. Firstly, the top pointer is
updated. Then the new element can be inserted at the position of the top pointer.

push(element)
top += 1
A[top] = element

www.pmt.education

pop()
To​ remove an item ​from a stack, the element at the position of the top pointer is recorded
before being removed. Then the top pointer is ​decremented by one ​before the removed
item is returned. As with ​peek()​, it’s important to check that the stack ​isn’t empty ​before
attempting a pop.

pop()
if isEmpty():

return error
else:

toRemove = A[top]
A[top] = “”
top -= 1
return toRemove

endif

Example
What would be the result of the following operations on a 3-element stack?

push(1)
push(5)
push(4)
peek()
pop()
isEmpty()

The first three operations ​push​ the items 1, 5 and 4 to the stack in that order.

 ​→ 1

→ 5

 1

→ 4

 5

 1

The next operation is a ​peek​. This returns the item at the top of the stack, but ​doesn’t
change the appearance of the stack​. Therefore this operation returns ​4 ​and the stack
remains the same.

Next is ​pop​. This ​removes the item at the top of the stack ​and returns it, ​4 ​, before the top
pointer moves down one place.

www.pmt.education

→ 5

 1

Finally ​isEmpty​ is carried out. The stack ​is not empty ​and so ​False ​ is returned.

isEmpty​ doesn’t affect the appearance of a stack, meaning that the final state of the stack
is as shown above. The output from the operations is:

4, 4, False

Queues
Queues are a type of​ first in, first out ​(FIFO) data structure. Just like stacks, queues are
often represented as arrays. However, unlike stacks, queues make use of two pointers:
front and back​. While front holds the position of the first element, back stores the ​next
available space ​.

Operations which can be carried out on queues are similar to those associated with
stacks, but be aware - some have different names.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

Alex Rajiv Sam Jayden Charlie

↑ ↑

Front Back

Operation Name

Check size size()

Check if empty isEmpty()

Return top element (but
don’t remove)

peek()

Add to the queue enqueue(element)

Remove from the queue
and return removed
element

dequeue()

www.pmt.education

size()
To work out the size of a queue, simply ​ subtract the value of front from back​. If front is at 0
and back is at 5, there are 5 elements in the queue.

size()
return back - front

isEmpty()
When a queue is empty, front and back ​ point to the same position​. To check whether a
queue is empty, just check whether the two pointers hold ​the same value ​.

isEmpty()
if front == back:

return True
else:

return False

peek()
Just like a stack, peek returns the element at the front of the queue ​without removing it ​.

peek()
return A[front]

enqueue(element)
To add an element to a queue, the element is placed in the position of back and then back
is ​incremented by one​.

enqueue(element)
A[back] = element
back += 1

www.pmt.education

dequeue()
Items are removed from a queue from the ​position of the front pointer ​. Just like stacks, it’s
important to check that the queue​ isn’t empty ​before trying to dequeue an element.

dequeue()
if isEmpty():

return error
else:

toDequeue = A[front]
A[front] = “”
front += 1
return toDequeue

Example

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

Alex Rajiv Sam Jayden Charlie

↑ ↑

Front Back

What would be the result of the following operations on the queue above?

dequeue()
enqueue(“Julia”)
size()
peek()
size()
dequeue()
isEmpty()

The first operation is ​dequeue​, which removes Alex from the front of the queue and
moves the front pointer to Rajiv. ​Alex ​is returned.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Rajiv Sam Jayden Charlie

 ↑ ↑

 Front Back

www.pmt.education

Next, Julia is enqueued. The name is added ​at the position of the back pointer ​and the
back pointer is moved to position 6.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Rajiv Sam Jayden Charlie Julia

 ↑ ↑

 Front Back
Now we check the size of the queue. ​6-1 = 5​ and so ​5 ​ is returned. The next operation is
peek​ which returns the item at the front of the queue, ​Rajiv ​ but does not change the
queue otherwise.
The next operation is ​size​, and because the queue hasn’t changed as a result of the
peek operation, ​5 ​is returned again.

Next a ​dequeue​ is performed. Rajiv is returned, removed from the queue and the front
pointer moved to Sam.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Sam Jayden Charlie Julia

 ↑ ↑

 Front Back
Finally, the ​isEmpty​ command is performed. Because the values of front and back ​are
not the same​, False is returned.

The output of the operations is therefore:

Alex, 5, Rajiv, 5, Rajiv, False

Linked Lists
A linked list is composed of ​nodes ​, each of which has a pointer to the ​next item ​in the list.
If a node is referred to as N, the next node can be accessed using ​N.next​. The first item in
a list is referred to as the ​head ​and the last as the ​tail​.

Searching a list is performed using a ​ linear search ​, carried out by sequential next
operations until the desired element is found.

www.pmt.education

Trees
Trees are formed from ​nodes ​and ​edges​, which ​cannot contain cycles ​and ​aren’t directed​.
Trees are useful as a data structure because they can be ​traversed​.

There are two types of traversal to cover: ​depth first ​(post-order) and ​breadth first​.

Depth first (post-order) traversal
Depth first search goes ​as far into the tree as possible ​before backtracking. The algorithm
goes to the​ left child node ​of the current node when it can. If there is no left child then the
algorithm goes to the ​ right child ​.

If there are no child nodes, the algorithm ​visits ​the current node, outputting the value of the
node before backtracking to the next node and ​moving right​.

On the tree below, with depth first search starting at the node labelled 5, the algorithm
moves left while it can, passing 3 before reaching 2. At this point, the algorithm can no
longer move left and therefore ‘visits’ 2, outputting the value.

The algorithm now backtracks to 3 and moves right to 4, at which point it can progress no
further. Therefore it outputs the value and backtracks again.

www.pmt.education

The algorithm backtracks from 4 to 3, which it outputs (as all of its children have been
visited) and continues to 5, where it can move right to 8. It outputs 8, backtracks to 5 and
outputs 5 before terminating. The order is therefore ​2, 4, 3, 8, 5 ​.

It can be easier to think of tree traversals as ​drawing a line ​around the tree, outputting as
the line passes the node at a particular point. In depth first traversals, nodes are output as
they are passed on the right, like so:

This gives the same result, ​2, 4, 3, 8, 5​.

www.pmt.education

Breadth first
Starting from the left, breadth-first visits ​all the children ​of the start node. The algorithm
then visits all nodes ​directly connected ​to each of those nodes in turn, continuing until
every node has been visited.

Starting at 5, which is visited immediately, the algorithm visits 3 and then 8.

As 8 has no children, the algorithm backtracks to 3 and visits its children, starting from the
left. 2 and 4 are visited and the algorithm backtracks to 2, 3 and 5 before terminating.

www.pmt.education

