csPMI

resources-tuition-courses

OCR Computer Science A Level

2.3.1 Sorting Algorithms

Concise Notes

O www.pmteducation Q@@ C) PMTEducation



(——|
(@)
‘ -resources-tuition-courses

Specification:

e Standard algorithms
o Bubble sort
o Insertion sort
o Merge sort
o Quick sort

O www.pmteducation Q@@ C) PMTEducation



(——|
@@
-resources-tuition-courses

Sorting Algorithms

Take a number of elements in any order and output them in a logical order
This is usually numerical or lexicographic (phonebook style ordering)

e Most output elements in ascending order, but can typically be slightly altered or
their output reversed in order to produce an output in descending order

Bubble Sort
e Makes comparisons and swaps between pairs of elements
e The largest element in the unsorted part of the input is said to “bubble” to the top of
the data with each iteration of the algorithm
o Starts at the first element in an array and compares it to the second
o If they are in the wrong order, the algorithm swaps the pair
o The process is then repeated for every adjacent pair of elements in the array,
until the end of the array is reached
This is one pass of the algorithm
For an array with n elements, the algorithm will perform n passes through the data
After n passes, the input is sorted and can be returned

A = Array of data

for i = @ to A.length - 1:
for j = @ to A.length - 2:
if A[j] > A[j+1]:
swap A[j] and A[j+1]
return A

Can be modified to improve efficiency

A flag recording whether a swap has occurred is introduced

If a full pass is made without any swaps, then the algorithm terminates

With each pass, one fewer element needs comparing as the n largest elements are
in position after the n™ pass

e Bubble sort is a fairly slow sorting algorithm, with a time complexity of 0(n?)

O www.pmteducation Q@@ C) PMTEducation



—
PM]
-resources-tuition-courses
Insertion Sort
e Places elements into a sorted sequence
e In the i iteration of the algorithm the first i elements of the array are sorted
o Warning: although the i elements are sorted, they are not the i smallest
elements in the input!
e Stars at the second element in the input, and compares it to the element to its left
e \When compared, elements are inserted into the correct position in the sorted
portion of the input to their left
e This continues until the last element is inserted into the correct position, resulting in
a fully sorted array
e Has the same time complexity as bubble sort, 0(n?)

A = Array of data

for i = 1 to A.length - 1:
elem = A[i]
j=i-1
while j > @ and A[j] > elem:
Alj+1] = A[j]
j=3-1
A[j+1] = elem

Merge Sort
e Example of a “divide and conquer” algorithm

e Formed from two functions. MergeSort and Merge
o MergeSort divides its input into two parts and recursively calls MergeSort
on each of those two parts until they are of length 1
Merge is then called
Merge puts groups of elements back together in a special way, ensuring that
the final group produced is sorted
e The exact implementation of merge isn’t required, but knowledge of how it works is
e A more efficient algorithm than bubble sort and insertion sort, with a worst case time
complexity of 0(n logn)

O www.pmteducation Q@@ C) PMTEducation



A = Array of data

csPMI

resources-tuition-courses

MergeSort(A)

if A.

else:

Quick Sort

length <= 1:
return A

mid = A.length / 2

left = A[0...mid]

right = A[mid+1...A.length-1]
leftSort = MergeSort(left)
rightSort = MergeSort(right)
return Merge(leftSort, rightSort)

e Works by selecting an element, often the central element (called a pivot), and
dividing the input around it

e Elements smaller than the pivot are placed in a list to the left of the pivot and others
are placed in a list to the right

e This process is then

repeated recursively on each new list until all elements in the

input are old pivots themselves or form a list of length 1
e Quick sort isn’t particularly fast, with time complexity 0(n?)

O www.pmteducation Q@@ C) PMTEducation



