

OCR Computer Science A Level

2.3.1 Path Finding Algorithms
Advanced Notes

www.pmt.education

Specification:

● Dijkstra’s shortest path algorithm
● A* algorithm

www.pmt.education

Dijkstra’s algorithm

Dijkstra’s algorithm finds the ​shortest path between two nodes in a weighted graph ​.
Remember that graphs are used as an abstraction for a variety of real life scenarios, which
means nodes and edges can represent different entities. For example, graphs can be used
to model networks, with nodes representing devices and arc costs representing network
traffic. In this scenario, Dijkstra’s algorithm can be used to determine the optimal route to
use when forwarding packets through a network.

Regardless of the scenario, complexity or size of the graph, Dijkstra’s algorithm can be
used to work out the shortest path using a consistent method each time. The algorithm is
commonly implemented using a ​priority queue​, with the smallest distances being stored at
the front of the list.

Below is a step-by-step example of using Dijkstra’s algorithm to find the shortest path
between A and E. You may be asked to demonstrate this in an exam.

-

www.pmt.education

Step 1
Starting from the root node (A), add the distances to all of the immediately neighbouring
nodes (B, C, D) to the priority queue. All of the remaining nodes that cannot be reached
are shown in grey and their distance is denoted by ∞.

When asked to demonstrate using Dijkstra’s algorithm to find the distance between two
nodes, it is helpful to use the table below. This allows you to keep track of visited nodes
and distances in an organised way, which is particularly important for solving more
complex problems which can get very confusing!

Begin by filling in the ‘Node’ column with the nodes connected to the root node. The ‘From’
column should contain the node that you are travelling from, and the ‘Distance’ column
contains the distance between these two nodes. The ‘Total distance’ is the sum of the
distances from the root node to that particular node. The node which is the shortest
distance away from the root node is highlighted and selected for the next stage.

Node From Distance Total distance

B A 7 7

C A 3 3

D A 6 6

www.pmt.education

Step 2
Remove the first node from the front of the queue. The distance associated with this node
will be the shortest distance between the root node and a neighbouring node, as a priority
queue is automatically ordered by size. Now traverse all of the nodes connected to the
removed node (C), without going back on the path already taken. This means traversing
the edges from C to B and C to E.

If the total distance passing through the removed node to the neighbouring node is smaller
than the distance currently stored with this node, update this value to the smaller distance.
In this case, C has two neighbours: B and E. The shortest total cost of travelling to E so far
is therefore 13, as it is less than the infinite value previously allocated to E. Travelling from
A to C to B adds up to a total cost of 5, while travelling from A to B has a cost of 7. The
cost value associated with B is updated to 5.

We have visited B, so can now ignore it. We can also remove routes that are not the
shortest way to get to a particular node, so the top row can be ignored. The new shortest
path is highlighted.

Node From Distance Total distance

B A 7 7

C A 3 3

D A 6 6

B C 2 5

E C 10 13

www.pmt.education

Step 3
Continue repeating Step 2 until the goal node has been reached. This time B is removed
from the front of the queue and the distances in the queue are updated. From B, we can
only travel to D. As the shortest path to B so far is 5, and the path from B to D is 3, the
total cost of travelling to D is 8. This is greater than the cost recorded in the queue already,
6, so this route can be ruled out.

Node From Distance Total distance

B A 7 7

C A 3 3

D A 6 6

B C 2 5

E C 10 13

D B 3 8

Once again, we repeat this same process for node D. The only node connected to D is E,
and the total cost of travelling from A to E is 11. This is shorter than the previous route to
E, which cost 14. The value of E can thus be updated to 11.

Node From Distance Total distance

B A 7 7

C A 3 3

D A 6 6

B C 2 5

E C 10 13

D B 3 8

E D 5 11

As we have now visited all of the nodes on the graph, we can confirm by tracing back
through the table above that the shortest path is ADE.

www.pmt.education

A* algorithm

The A* Algorithm is a general path-finding algorithm which is an improvement of Dijkstra’s
algorithm and has ​two cost functions​:

1) The first cost function is the actual cost between two nodes. This is the same cost
as is measured in Dijkstra’s algorithm.

2) The second cost function is an ​approximate cost from node x to the final node ​. This
is called a heuristic, and aims to make the shortest path finding process more
efficient. The approximate cost might be an estimate of the length between x and
the final node, calculated using trigonometry.

When calculating the distance between two nodes using the A* algorithm, the approximate
cost is added onto the actual cost. This is used to determine which node is visited next.
This differs from Dijkstra’s algorithm as a node with a lower actual cost may be rejected in
favour of a node with a lower total cost. This is meant to reduce the total time taken to find
the shortest path. The heuristic costs are labelled in red on the diagram.

Step 1
When working out the shortest distance using the A* algorithm, an extra column is
required to store the heuristic. The method used here is very similar to the method used in
Dijkstra’s algorithm, with the exception that the heuristic cost is added onto the actual cost
to calculate the total cost. Again, the route with the lowest total cost is selected to traverse
further.

Node From Distance Heuristic Total distance

B A 7 6 13

C A 3 7 10

D A 6 1 7

www.pmt.education

Step 2
The node D is then selected. Note that the heuristic cost of the previous node is not added
on to the new distance, thus giving a total distance of 11 travelling from A to D to E. As 11
is the shortest total distance, the algorithm terminates. The shortest route is found to be
ADE, at a cost of 11.

Node From Distance Heuristic Total distance

B A 7 6 13

C A 3 11 14

D A 6 12 18

E D 5 - 11

As you can see, the heuristics used here allow the shortest path to be found much quicker
than when using Dijkstra’s algorithm. How effective the A* algorithm is, however, depends
largely on the accuracy of the heuristics used.

www.pmt.education

