
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

OCR Computer Science AS Level

2.3.1 Analysis, Design and Comparison
of Algorithms
Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Analysis of Algorithms

When developing an algorithm there are two different things to check:
- Time Complexity
- Space Complexity

Time of Complexity
The time complexity of an algorithm is how much time it requires to solve a particular
problem. The time complexity is measured using a notation called big-o notation, which
shows the effectiveness of the algorithm. It shows an upper limit for the amount of time
taken relative to the number of data elements given as an input. This is good because it
allows you to predict the amount of time it takes for an algorithm to finish given the number
of data elements.

You can think of this as a graph, as the number of data elements entered against the time
taken to complete the algorithm. This will be helpful for showing the relationships between
time and the number of elements inputted. These are shown below.

Big-O notation is written in the form O(n), where n is the relationship between n: the
number of inputted entities, and O(n) is the time relationship. Below are examples of
different big o notations:

Big O Notation Name Description

O(1) Constant time
complexity

The amount of time taken to complete an
algorithm is independent from the number of
elements inputted.

O(n) Linear time complexity The amount of time taken to complete an
algorithm is directly proportional to the number of
elements inputted.

O(n²) Polynomial time
complexity (example)

The amount of time taken to complete an
algorithm is directly proportional to the square of
the elements inputted.

O(nn) Polynomial time
complexity

The amount of time taken to complete an
algorithm is directly proportional to the elements
inputted to the power of n

O(2n) Exponential time
complexity

The amount of time taken to complete an
algorithm will double with every additional item.

O(log n) Logarithmic time
complexity

The time taken to complete an algorithm will
increase at a smaller rate as the number of
elements inputted.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

When calculating the time complexity, you should think logically through the algorithm.
Below are a few examples:

Algorithm example Big-O notation

This examples is unrelated to the number of
items inputted:

For example:

print(“hello”)

Constant Time:

This will always take the same amount
of time to complete regardless of the
number of values inputted.

This example is directly proportional to the
number of items inputted:

For example:

inputtedValue = [a,b,c….n]

for i in range(len(inputedValue)):
print(“hello””)

Linear Time Complexity:

The time taken to complete the
algorithm is related to the number of
items inputted

As you can see, the number of
operations completed was proportional
to the inputted value.

This example is proportional to the number of
items inputted to the power of n:

For example:

inputtedValue = [a,b,c….n]

For i in range(len(inputedValue)):
For i in range(len(inputedValue)):

print(“hello””)

Polynomial Time Complexity:

The time taken to complete the
algorithm is proportional to the number
of items inputted to the power of n,
below is an example of O(n2).

As you can see the power given to the
polynomial is the same as the number
of embedded for loops.

This example is exponentially proportional to
the number of items inputted:

For example:

Recursive algorithms that solve a problem of
size N by recursively solving two smaller
problems of size N-1.

Exponential Time Complexity:

The time taken to complete the
algorithm is proportional to 2 to the
power of the number of items inputted.

This is common with recursive
algorithms solving two smaller
problems of size n-1.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This example is logarithmically related to the
number of items inputted (it’s important to
understand logs for this, they will be explained
later on):

For example:

A divide and conquer algorithm is a good
example of this, the number of items you have
to search through gets halved every time.

Logarithmic Time Complexity:

Logarithms are explained below.

What a Constant Time Complexity graph looks like:

What the Linear Time Complexity graph looks like:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What a Polynomial Time Complexity graph looks like:

What an Exponential Time Complexity graph looks like:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

What a Logarithmic Time Complexity graph looks like:

A comparison of the different complexities:

As you can see from the graph, the best time complexity for an
algorithm as the number of inputted items increases is the linear
time complexity. The order goes:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Logarithms
A logarithm is the inverse of an exponential, an operation that determines how many times
a certain number (base) is multiplied by itself to reach another number. It might help to
check the extra resources for more information on this.

An example is shown below:

x y = log(x)

1 (20) 0

8 (23) 3

1024 (210) 10

Space Complexity
The space complexity of an algorithm is the amount of storage the algorithm takes. Space
complexity is commonly expressed using Big O (O(n)) notation. Algorithms store extra
data whenever they make a copy, this isn’t ideal. When working with lots of data, it’s not a
good idea to make copies. As this will take lots of storage which is expensive.

Analysing algorithms based on these properties
Time complexity and space complexity are the most important things to keep in mind when
you’re analysing the effectiveness of a program. The time and space complexity have no
priority, you need to decide which one is more important to you at the time you design the
algorithm.

Designing Algorithms

An algorithm is a series of steps that completes a task. When you design an algorithm
your main objective is to complete a task, the next objectives are to get the best time
complexity and the best space complexity. When you try to minimise the time and space
complexity you might get conflicted thinking about which one of the two complexities are
more important. It is entirely dependant on the situation, below are some examples:

When developing an algorithm for manipulating data in a large database:
- If you have a lot of data but need the data to be processed quickly, say for a future

update, then you’d pay more attention to the time complexity rather than the space
complexity.

- If you have a lot of processing power then your time complexity isn’t as important as
you might think, therefore you would focus on the space complexity to make sure
you aren’t wasting lots of data often.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

To reduce the space complexity, you make sure you perform all of the changes on the
original pieces of data. To reduce the time complexity, try to reduce the number of
embedded loops as possible. Try to reduce the number of items you have to complete the
operations on, for example the divide a conquer algorithm accomplishes this and results in
logarithmic time complexity.

Comparison of Algorithms
The exam board will mostly compare the time complexity. Occasionally they will mention
space complexity although it’s important to just understand the smaller the space
complexity the better the algorithm is.

Linear Search Algorithm
A linear search algorithm is an algorithm which traverses through every item one at a time
until it finds the item its searching for, below is the pseudocode for the linear search
algorithm. The Big-O notation for a linear search algorithm is O(n).
__
Function linearSearch(list, item)

index = -1
i = 0
found = False
while i < length(list) and found = False

if list[i] = item then
index = i
found = True

endif
i = i + 1

endwhile
return index

endfunction
__

As you can see, the linear search algorithm has a single while loop in it, this is why it’s a
linear time complexity algorithm

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Binary Search Algorithm
A binary search algorithm is a divide and conquer algorithm, this means it splits the list into
smaller lists until it finds the item it’s searching for, since the size of the list is halved every
time it’s a Big-O notation of O(log(n)).
__
function binarySearch(list, item)

found = False
index = -1
first = 0
last = length(list) - 1
while first <= last and found = False

midpoint = int (first + last) / 2)
if list[midpoint] = item then

found = True
index = midpoint

else
if list[midpoint] < item then

first = midpoint + 1
else

last = midpoint - 1
endif

endif
endwhile
return index

endfunction
__

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Bubble Sort Algorithm
The bubble sort algorithm passes through the list evaluating pairs of items and ensuring
the larger value is above the smaller value. It has a polynomial Big-O notation, O(n2).
Below is the algorithm:
__
function bubbleSort(list, item)

found = False
i = 0
while found = False and i < length(item)

if list[i] > list[i+1]
temp = list[i]
list[i] = list[i+1]
list[i+1] = temp

endif
i = i +1

endwhile
return list

endfunction
__

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

