

OCR Computer Science A Level

2.2.1 Programming Techniques
Advanced Notes

www.pmt.education

Specification:

2.2.1 a)

● Programming constructs
○ Sequence
○ Iteration
○ Branching

2.2.1 b)

● Recursion
○ How it can be used
○ How it compares to an iterative approach

2.2.1 c)

● Global and local variables

2.2.1 d)

● Modularity, functions and procedures
○ Parameter passing by value
○ Parameter passing by reference

2.2.1 e)

● Use of an IDE to develop / debug a program

2.2.1 f)

● Use of object-oriented techniques

www.pmt.education

Programming Constructs

A crucial part of solving a problem is simplifying it to represent it in a way that makes it
easier to understand and thus program. The following constructs are used to represent a
program’s ​control flow ​ in a popular subsection of procedural programming called
structured programming ​:

- Sequence
Code is executed ​line-by-line​, from top to bottom.

- Branching

A certain block of code is run ​if a specific condition is met ​, using IF
statements. This is also known as ‘selection’.

- Iteration

A block of code is executed a ​certain number of times ​ or​ while a condition is
met​. Iteration uses FOR, WHILE or REPEAT UNTIL loops.
Iteration can be either:

- Count-controlled

Iteration is repeated a given number of times.

for i in range (0,10):
print i

next i

- Condition-controlled

Iteration continues until a given condition is met.

while i <= 20:
print “Not true”;
i=i+1

endwhile

www.pmt.education

Recursion

Recursion is a programming construct in which a ​subroutine
calls itself​ during its execution. This continues until a certain
condition - called the ​stopping condition​ - is met, at which
point the recursion stops. Recursion produces the same
result as iteration, but is more suited to certain problems
which are more easily expressed using recursion.

The advantage of using recursion for certain problems is that
they can be represented in ​fewer lines of code​, which makes them less prone to errors.
However it is essential that recursive subroutines are clearly defined so as to reach a
stopping condition after a ​finite number of function calls ​.

A common example of a naturally recursive function is factorial, shown below:

function factorial(number)
if number == 0 or 1:

return 1
else:

 return number * factorial(number - 1);
endif

end function

Each time the function calls itself, a new ​stack frame​ is
created within the ​call stack​, where ​parameters ​,​ local
variables​ and ​return addresses​ are stored. This information
allows the subroutine to return to that particular point during
its execution. A finite number of stack frames are created
until the stopping condition, or ​base case ​, is reached at
which point the subroutine ​unwinds​. This refers to the
process of information from the call stack being popped off
the stack.

There are some disadvantages to recursion, the biggest being its ​inefficient use of
memory​. If the subroutine calls itself too many times, there is a danger of a ​stack overflow​,
which is when the ​call stack runs out of memory​. This would cause the program to crash.
Tail recursion ​is a form of recursion which is implemented in a more efficient way in which
less stack space is required. Another problem with recursion is that it is ​difficult to trace​,
especially with more and more function calls.

www.pmt.education

Global and Local Variables

Variables can be defined with either global or local scope. ​Scope ​refers to the​ section of
code in which the variable is available​.

Local variables ​ have limited scope which means that they
can only be ​ ​accessed within the block of code in which they
were defined​. If a local variable is defined within a
subroutine, it can only be accessed within that subroutine.
Therefore, multiple local variables with the same name can
exist in different subroutines and will remain unaffected by
each other. Using local variables is considered to be good
programming practice because it ensures subroutines are
self-contained​, with no danger of variables being affected by
code outside of the subroutine.

Global variables ​, on the other hand, can be ​accessed across the whole program​. All
variables used in the main body of a program are automatically declared to be global.
These are useful for values that need to be used by multiple parts of the program. On the
whole, however, using global variables is ​not recommended ​because they can be
unintentionally overwritten​ and edited. As global variables are not deleted until the
program terminates, they ​require more memory ​than local variables which are deleted
once the subroutine has been completed.

In the event that a local variable exists within a subroutine with the same name as a global
variable, the local variable will take precedence.

Modularity, Functions and Procedures

Modular programming is a programming technique used to ​split large, complex programs
into smaller, self-contained modules​. Modularity is essential to making a problem easier to
understand and approach. A ​modular design​ also makes it easier to ​ divide tasks between
a team​ and manage, whilst simplifying the process of testing and maintenance, as each
component can be ​dealt with individually ​. This improves the ​reusability ​of components, as
once a module has been tested, it can be reused with confidence.

A popular technique used to modularise programs is called
the ​top-down approach ​, in which the problem is ​continually
broken down into sub-problems​, until each can be
represented as an ​individual, self-contained blackbox which
performs a certain task​.

www.pmt.education

This process is also known as ​stepwise refinement​. These modules form blocks of code
called ​subroutines ​, which can be categorised as either functions or procedures. Below is
an example of a top-down design for a problem involving a book reservation system:

Procedures and functions are both ​named blocks of code
that perform a specific task​. While​ procedures do not have
to return a value​,​ functions must always return a value ​.
Procedures can return multiple values whereas a function
must return one, single value. Procedures are typically
given data as parameters for manipulation while functions
commonly make use of ​ local variables​.

The subroutine below is an example of a function as it always returns a value of either
True or False regardless of the input.

function isEven(number):
if number MOD 2 = 0:

return True
else:

return False
end function

When parameters are passed into a subroutine, they can be passed either​ by value​ or ​by
reference ​. When a parameter is passed by value, it is effectively treated as a ​local
variable​; a ​copy of the value​ ​is passed to the subroutine and discarded at the end
therefore its value outside of the subroutine will not be affected. Passing by reference
means that the ​address of the parameter ​ is given to the subroutine, so the value of the
parameter will be​ updated at the given address​.

In exam questions, you should assume parameters are passed by value unless you are
told otherwise. The following format will be used:

function multiply(x:byVal, y:byRef)

www.pmt.education

Use of an IDE

An​ Integrated Development Environment ​, or IDE, is a ​program ​which provides a s ​et of
tools​ to make it easier for programmers to ​write, develop and debug code​. Examples of
IDEs include PyCharm, Eclipse, IDLE and Microsoft Visual Studio. Common features of
IDEs include:

- Stepping
This allows you to ​monitor the effect of each individual line of code​ by
executing a single line at a time.

- Variable watch
Sometimes used to pinpoint errors, this is a useful feature to observe how
the ​contents of a variable change ​ in real-time through the execution of a
program.

- Breakpoint
IDEs allow users to ​set a point in the program at which the program will stop​.
This can either be based on a condition or set to occur at a specific line. This
can help to pinpoint where an error is occurring.

- Source code editor
The editor aims to make the coding process easier by providing features
such as ​autocompletion ​ of words, ​indentation ​, syntax ​highlighting ​and
automatic bracket completion.

- Debugging tools
Some IDEs also provide ​run-time detection of error​s with a guide as to where
in the code they are likely to have occurred through line numbers and
highlighting.

www.pmt.education

Use of object-oriented techniques

The techniques used in object-oriented programming are fundamental throughout all of
computer science.

Object-oriented languages are built around the idea of classes. A ​class ​is a ​template for an
object ​and defines the ​state and behaviour of an object ​. State is given by ​attributes ​which
give an ​ object’s properties​. Behaviour is defined by the ​methods ​associated with a class,
which describe the ​actions it can perform​.

Classes can be used to create objects by a process called ​instantiation ​. An ​object ​is a
particular instance of a class​, and a class can be used to create multiple objects with the
same set of attributes and methods.

In object-oriented programming, ​attributes are declared as private so can only be altered
by public methods ​. This is called ​encapsulation ​. Encapsulation is a technique used
throughout programming to implement the principle of ​information hiding ​. This is when
programs are made ​less complex ​by ​protecting data from being accidentally edited​ by
other parts of the program. Top-down design implements the same principle of
encapsulation, as each module is designed to be self-contained.

www.pmt.education

