

OCR Computer Science A Level

2.1.2 Thinking Ahead
Intermediate Notes

www.pmt.education

Specification:

2.1.2 a)

● Identify the inputs and outputs for a given situation.

2.1.2 b)
● Determine the preconditions for devising a solution to a problem.

2.1.2 c)

● The nature, benefits and drawbacks of caching

2.1.2 d)

● The need for reusable program components

www.pmt.education

Inputs and Outputs

Designing a solution entails thinking ahead about the ​different components of a problem
and how they will be ​handled in the best way​ possible. Taking into account the difficulties
that may arise when software is used, developers can design strategies to make programs
easy and intuitive to use​.

At their core, all computational problems consist of inputs which are processed to produce
an output. ​Inputs ​include any ​data required to solve the problem​, entered into the system
by the user. ​Outputs ​are the ​results that are passed back ​ once the inputs have been
processed and the problem solved. Designers must decide on a ​suitable data type,
structure and method​ to use in order to present the solution, given the scenario.

You must be able to identify the inputs and outputs that would be required to form a
program given a scenario. Take, for example, a program designed for an ATM.

Inputs Outputs

Transaction type: Deposit? Balance
check? Withdrawal?

If deposit selected: Display total amount
entered on screen

Card details, captured using a card reader If balance check selected: Display total
account balance on screen

PIN, entered via keypad If withdrawal selected: Dispense correct
amount of cash.

 Print receipt to confirm transaction

 Speaker provides verbal feedback
throughput.

You might also be asked about ​how this data is captured​, or ​relayed back​ to the user once
processed. The input devices required would be a touch screen, magnetic stripe card
reader and keypad, while output devices would include a monitor, cash dispenser, printer
and speakers.

Typically, designers begin by considering what outputs are required of the solution based
on the user’s requirements. The next step is to identify the inputs required and how these
need to be processed to achieve these outputs.

www.pmt.education

Preconditions

Preconditions ​are​ requirements which must be met before a program can be executed​.
Specifying preconditions means that a subroutine can ​safely expect the arguments passed
to it to meet certain criteria​, as defined by the preconditions. Preconditions can be ​tested
for within the code ​ but are more often​ included in the documentation ​ accompanying a
particular subroutine, library or program.

Consider, for example, the function ​pop()​, which ​removes the last item added to a stack​.
The function first checks that the stack is not empty by checking that the top pointer is
greater than 0. It is important that this is tested for within the code, as popping from an
empty stack would otherwise produce an error that would cause the program to crash.

Preconditions can also be included within the documentation, in which case it is the user’s
responsibility to ensure inputs meet the requirements specified. An example of this is the
factorial ​function, which can only be called upon positive numbers. Rather than
checking that the arguments passed to the function are​ non-negative ​, this is ​specified
within the documentation accompanying this function​.

Including preconditions as part of the documentation ​reduces the length and complexity of
the program ​ as well as ​saving time needed to debug and maintain​ a longer program. By
ensuring that these checks are carried out before a subroutine is executed, preconditions
make subroutines ​more reusable​.

Reusable Program Components

Commonly used functions​ are often ​packaged into libraries
for reuse​. Teams working on large projects might put
together a library so components can be reused. Reusable
components include​ implementations of abstract data
structures​ such as queues and stacks as well as ​classes
and ​subroutines​. When designing a piece of software, the
problem is ​decomposed​: it is ​broken down into smaller,
simpler tasks​. This allows developers to identify where
program components developed in the past​, or
externally-sourced components​, can be ​reused ​to simplify
the development process.

Reusable components are ​more reliable​ than newly-coded components, as they have
already been tested ​. This ​saves time, money and resources​. Producing well-tested,

www.pmt.education

reusable components means that they can be ​reused in future projects​,​ saving
development costs​. However, it may not always be possible to integrate existing
components due to ​compatibility issues​ with the rest of the software. This might mean
these components need to be modified to work with existing software, which can
sometimes be more costly and time-consuming than developing them in-house.

A Level only

Caching

Caching is the process of ​storing instructions or values in cache memory​ after they have
been used, as they ​ may be used again​. This ​saves time​ which would have been needed to
retrieve the instructions from secondary storage again. ​Frequently-accessed web pages
are cached which means that the next time one of these pages is accessed, content can
be​ loaded without delay​. This also means images and text do not have to be downloaded
multiple times,​ freeing up bandwidth​ for other tasks on a network.

A variation of caching is ​prefetching​, in which ​algorithms predict which instructions are
likely to soon be fetched​. These instructions are then ​loaded and stored in cache before
they are fetched​. By thinking ahead, therefore, ​less time is spent waiting ​for instructions to
be loaded into RAM from the hard disk.

One of the biggest limitations to prefetching is the ​accuracy of the algorithms used ​, as they
can ​only provide an informed prediction​ as to the instructions which are likely to be used.
Similarly, the effectiveness of caching depends on how well a caching algorithm is able to
manage the cache. Larger caches take a long time to search and so ​cache size limits how
much data can be stored​.

In general, this form of thinking ahead can be ​difficult to implement ​ but can significantly
improve performance if implemented effectively.

www.pmt.education

