

OCR Computer Science A Level

1.4.2 Data Structures
Intermediate Notes

www.pmt.education

Specification

1.4.2 a)
● Arrays
● Records
● Lists
● Tuples

1.4.2 b)
● Linked List
● Graphs
● Stack
● Queue
● Tree
● Binary Search Tree
● Hash Table

1.4.2 c)
● Traversing data structures
● Adding data and removing data from data structures

www.pmt.education

Arrays, Records, Lists, and Tuples

Arrays
An array is an ​ordered, finite set of elements​ of a ​single type​. A 1D (one-dimensional)
array is​ linear​. Arrays are always taken as ​zero-indexed​, unless stated otherwise.
Elements are selected using the syntax: ​oneDimensionalArray[x]​, where x is the
position of the element.

A two-dimensional array can be visualised as a ​table ​or ​spreadsheet ​. When finding a given
position in a 2D array, you first go ​down the rows​ and then ​across the columns ​. Selecting
elements requires the following syntax to be used: ​twoDimensionalArray[z,y,x]

A three-dimensional array can be visualised as a​ multi-page spreadsheet​ and can be
thought of as multiple 2D arrays. Selecting an element in a 3D array requires the following
syntax to be used: ​threeDimensionalArray[z,y,x]​, where z is the array number, y
is the row number and x is the column number.

Records
A ​record ​is a​ row in a file​ and is made up of ​fields​. Records are used in databases.
Each field in a record can be identified using the syntax: ​recordName.fieldName​. First,
however, a record must be created by creating a variable. The syntax below shows the
variable ‘fighter’ being created from a record structure called ‘fighterDataType’:
fighter : fighterDataType
Its attributes can then be accessed, using the following syntax:
fighter.FirstName

Lists
A list is a data structure consisting of a number of ​ordered ​items where the items can
occur more than once​. Items in lists can be stored ​non-contiguously ​ and can be of ​more
than one data type ​, which is not possible in an array.

Manipulating lists

List Operations Example Description

isEmpty() List.isEmpty()
>> False

Checks if the list is empty

append(value) List.append(15)
>>

Adds a new value to the
end of the list

remove(value) List.remove(23)
>>

Removes the value the first
time it appears in the list

www.pmt.education

search(value) List.search(38)
>> False

Searches for a value in the
list.

length() List.length()
>> 7

Returns the length of the
list

index(value) List.index(23)
>> 0

Returns the position of the
item

insert(position, value) List.insert(4,25)
>>

Inserts a value at a given
position

pop() List.pop()
>>12

Returns and removes the
last value in the list

pop(position) list.pop(3) Returns and removes the
value in the list at the given
position

Tuples
An ​ordered set of values of any type​ is called a tuple. Tuples are ​immutable ​, which means
elements cannot be added or removed once a tuple has been created. Tuples are
initialised using regular brackets and elements are accessed in the same way as elements
in an array.

Linked Lists, Graphs, Stacks, Queues, and Trees

Linked Lists
A ​dynamic data structure ​ used to hold an ordered sequence. Items do not have to be in
contiguous data locations. Each item is called a ​node ​, and contains a ​data field ​ alongside
a ​link ​or ​pointer field ​.

Index Data Pointer

0 ‘Linked’ 2

1 ‘Example’ 0

2 ‘List’ -

3

 Start = 1 NextFree=3

www.pmt.education

The data field contains the actual data value. The pointer field contains the address of the
next item in the list. Linked lists also store the​ index of the first item ​along with the index of
the ​next available space ​ as pointers. When traversing a linked list, the algorithm begins at
the index given by the ‘Start’ pointer and outputs the values at each node until it finds that
the pointer field is empty or null. This signals the end of the linked list. Traversing the
linked list above would produce:
‘Example’, ‘Linked’, ‘List’

Manipulating a linked list
The following procedure is used to add the word ‘OCR’ after the word ‘Example’:

1. Add the new value to the end of the linked list and update the ‘NextFree’ pointer.

3 ‘OCR’

 Start = 1 NextFree=4

2. The pointer field of the word ‘Example’ is updated to point to ‘OCR’, at position 3.

1 ‘Example’’ 3

3. The pointer field of the word ‘OCR’ is updated to point to ‘Linked’, at position 0.

3 ‘OCR’ 0

4. When traversed, this linked list will now output ‘Example’, ‘OCR’, ‘Linked’, ‘List’.

The following procedure is used to remove the word ‘Linked’ from the original linked list:

1. Update the pointer field of ‘Example’ to point to ‘List’ at index 2.

0 ‘Linked’ 2

1 ‘Example’ 2

2 ‘List’ -

2. When traversed, this linked list will now print ‘Example’, ‘List’.

www.pmt.education

The node is not truly removed from the list, only ignored. Although this is easier, it ​wastes
memory​. Storing pointers also means more memory is required compared to an array.

Graphs
A graph is a set of ​vertices/nodes​ connected by ​edges/arcs ​. There are three types:

- Directed Graph: The edges can only be traversed in one direction.
- Undirected Graph: The edges can be traversed in both directions.
- Weighted Graph: A cost is attached to each edge.

Graphs can be represented using either an ​adjacency matrix ​ or an ​adjacency list​.

Advantages of using Adjacency Matrix Advantages of using Adjacency List

Convenient to work with Space efficient for large sparse networks

Easy to add nodes

Stacks
A stack is a ​last in first out (LIFO)​ data structure. Items can only be added to or removed
from the top of the stack. Stacks are ​used to reverse an action​, such as to go back a page
in web browsers and in ‘undo’ buttons. Stacks are implemented using a pointer which
points to the top of the stack, where the next piece of data will be inserted.

Manipulating a stack

Stack Operations Example Description

isEmpty() Stack.isEmpty()
>> True

Checks if the stack is
empty.

push(value) Stack.append(“Nadia”)
>>
Stack.append(“Elijah”)
>>

Adds a new value to the end
of the list.

peek() Stack.peek()
>> “Elijah”

Returns the top value from
the stack.

pop() Stack.pop()
>> “Elijah”

Removes and returns the
top value of the stack.

size() Stack.size()
>> 2

Returns the size of the stack

isFull() Stack.isFull()
>> False

Checks if the stack if full
and returns a Boolean
value.

www.pmt.education

Queue
A queue is a​ first in first out (FIFO)​ data structure; items are added to the end of the queue
and are removed from the front of the queue. Queues are used in printers to store print
jobs, keyboards and simulators.

In a ​linear queue​, items are added into the next available space, starting from the front.
Items are removed from the front of the queue. Queues make use of two pointers: pointing
to the front and back of the queue.

Manipulating a queue
The highlighted boxes in the example below show the front of the queue.

enQueue(Task3) // enQueue(item) is how items are added to a queue

Position 0 1 2 3 4 5

Data Task1 Task2 Task3

deQueue() // deQueue(item) is how items are removed from a queue

Position 0 1 2 3 4 5

Data Task2 Task3

Positions from which data has been removed cannot be used again, making a linear
queue an ineffective implementation of a queue.

Circular queues ​ are coded so that once the queue’s ​rear pointer​ is equal to the maximum
size of the queue, the queue can loop back to the front and store values here, provided
that there is empty space. Therefore, circular queues use space more effectively, although
they are harder to implement.

Below is an example illustrating how the rear pointer in a circular queue works:

enQueue(Task6)

Position 0 1 2 3 4 5

Data Task3 Task4 Task5 Task6

rearPointer : 5
maxSize : 5

www.pmt.education

enQueue(Task7)

Position 0 1 2 3 4 5

Data Task7 Task3 Task4 Task5 Task6

rearPointer : 0
maxSize : 5

Queue Operations Example Description

enQueue(value) Queue.enQueue(“Nadia”)
>>
Queue.enQueue(“Elijah”)
>>

Adds a new item to the end
of the queue.

deQueue() Queue.deQueue()
>>

Removes the item from the
front of the queue. .

isEmpty() Queue.isEmpty()
>> False

Checks if the queue if empty

isFull() Queue.isFull()
>> False

Checks if the queue is full

Trees
A tree is a connected ​form of a graph​.

Node An item in the tree

Edge Connects two nodes
together and is also known
as a branch, or arc

Root A single node which does
not have any incoming
nodes

Child A node with incoming edges

Parent A node with outgoing edges

Subtree Subsection of a tree
consisting of a parent and all
the children of a parent

Leaf A node with no children

www.pmt.education

A binary tree is a tree in which each node has a​ maximum of two children. ​These
represent information in a way that is easy to search. The most common way to represent
a binary tree is by storing each node with a ​ left pointer​ and a ​right pointer​.

Index Left
Pointer

Data
Value

Right
Pointer

0 1 G 3

1 2 C 4

2 - A -

3 - J 5

4 - F -

5 - L -

Traversing a binary tree
There are three methods of traversing a binary tree: Pre-order, In-order and Post-order.
A simple way of remembering these is using the ​outline method ​, which is described below.

Pre-order Traversal
Pre-order traversal follows the order: root node, left subtree, then right subtree.
Using the outline method, nodes are traversed in the order in which you pass them on the
left, beginning at the left-hand side of the root node.
Pre-order traversal is used in programming languages in which the operation is written
before the values. This means a + b would be written as + a b, as shown in the diagram.

The order of traversal is: 15, 9, 5, 7, 11, 10, 12, 20, 25, 34

www.pmt.education

In-order Traversal
In-order traversal follows the order: left subtree, root node, right subtree.
Using the outline method, nodes are traversed in the order in which you pass under them,
beginning at the first node from the left which does not have two child nodes.
This is useful for traversing the nodes in sequential order by size.

Order: 5, 7, 9, 10, 11, 12, 15, 20, 25, 34

Post-order Traversal
Post order traversal follows the order: left subtree, right subtree, root node.
Using the outline method, nodes are traversed in the order in which you pass them on the
right.

Order: 7, 5, 10, 12, 11, 9, 34, 25, 20, 15

www.pmt.education

Hash Tables
A hash table is an array which is coupled with a ​hash function. ​ The hash function takes in
data (​a key​) to produce a unique output (​the hash​). It exists to ​map the key to a unique
index​ in the hash table.

Sometimes, two keys might produce the same hashed value.
This is called a ​collision​, in which case the item is typically
placed in the next available location. A ​good hashing
algorithm ​ should have a ​low rate of collisions ​.

Hash tables are commonly used for ​indexing ​, as they provide
fast access to data due to keys having a unique, one-to-one
relationship with the address at which they are stored.

www.pmt.education

