

OCR Computer Science A Level

1.4.2 Data Structures
Concise Notes

www.pmt.education

Specification

1.4.2 a)

● Arrays
● Records
● Lists
● Tuples

1.4.2 b)

● Linked List
● Graphs
● Stack
● Queue
● Tree
● Binary Search Tree
● Hash Table

1.4.2 c)

● Traversing data structures
● Adding data and removing data from data structures

www.pmt.education

Arrays, Records, Lists, and Tuples

Arrays

● An array is an ​ordered, finite set of elements​ of a ​single type​.
● A 1D (one- dimensional) array is a ​ linear array ​.
● A 2D (two-dimensional) array can be visualised as a ​table/spreadsheet​.
● When searching an array, first go ​down the rows​ and then ​across the columns ​.
● A 3D (three-dimensional) array can be visualised as a​ multi-page spreadsheet

○ An element in a 3D array using: ​threeDimensionalArray[z,y,x]
z = array number, y = row number, x = column number.

Records

● More commonly referred to as a​ row in a file​,
● A record is made up of ​fields​, and is widely used in databases.

Lists

● Consists of a number of items, where items can​ occur more than once​.
● Data can be stored in ​non-contiguous locations ​ and be of more than one data type.

Tuples

● An ordered set of values of ​any data type​ .
● Cannot be changed ​: elements cannot be added, edited or removed once initialised.
● Initialised with regular brackets rather than square brackets

Linked Lists, Graphs, Stacks, Queues, and Trees

Linked Lists

● Dynamic data structure ​ used to hold an ordered sequence
● Items do not have to be in contiguous data locations
● Each item is called a ​node ​, and contains a ​data field ​ and a ​link or pointer field​.
● Data field: contains the actual data associated with the list
● Pointer field: contains the address of the next item in the list

Graphs

● Set of ​vertices/nodes​ connected by ​edges/arcs ​. ,
○ Directed Graph: Edges can only be traversed in one direction
○ Undirected Graph:Edges can be traversed in both directions,
○ Weighted Graph: Each arc has a cost attached to it

● Implemented using an ​ adjacency matrix​ or an ​adjacency list​.

www.pmt.education

Advantages of using Adjacency Matrix Advantages of using Adjacency List

Convenient to work with Space efficient for large sparse networks

Easy to add nodes

Stacks

● Last in first out (LIFO)​ data structure:
○ Items can only be added to/ removed from the top of the stack.

● Used to reverse actions, eg. back buttons and undo buttons use stacks
● Can be implemented as a static or dynamic structure.

Queues

● First in first out (FIFO)​ data structure:
○ Items are added to the end and are removed from the front of the queue.

● Used in printers, keyboards and simulators.
● Linear queue​: items are added into the next available space, starting from the front.

○ Items are removed from the front of the queue
○ Uses two pointers: pointing to the front and back of the queue.
○ Use space inefficiently, as positions from which data has been removed

cannot be reused
● Circular queues ​ have a ​rear pointer​ that can loop back to the front of the queue and

utilise empty space at the front.
○ Are harder to implement.

Trees

● A ​connected graph​, with a root and child nodes.
● Node: Item in the tree,
● Edge: Connects two nodes

together and is also
called a branch/arc

● Root: Node with no
incoming nodes

● Child: Node with incoming
edges

● Parent: Node with outgoing
edges

● Subtree: Section of a tree
consisting of a parent
and its children

● Leaf: Node with no
children.

www.pmt.education

● A binary tree is a type of tree where each node has a​ maximum of two children.
● Store information in a way that is easy to search through
● Commonly represented by storing each node with a​ left pointer​ and a ​right pointer ​.

Hash Tables

● An array coupled with a ​hash function.
● Hash function takes in data (​a key​) to produce a unique output (​the hash​).
● Typically used to ​map the key to a unique index ​ in the hash table.
● Two keys producing the same hashed value is called a ​collision
● If this occurs, the item is typically placed in the next available location.
● A ​good hashing algorithm​ should have a ​low rate of collisions ​.

Traversing Data Structures

Pre-order Traversal
Pre-order traversal follows the order: root
node, left subtree, then right subtree.
Using the outline method, nodes are
traversed in the order in which you pass
them on the left, beginning at the
left-hand side of the root node.

The order of traversal is: 15, 9, 5, 7, 11,
10, 12, 20, 25, 34

In-order Traversal
In-order traversal follows the order: left
subtree, root node, right subtree.
Using the outline method, nodes are
traversed in the order in which you pass
under them, beginning at the first node from
the left which does not have two child
nodes.
This is useful for traversing the nodes in
sequential order by size.

Order: 5, 7, 9, 10, 11, 12, 15, 20, 25, 34

www.pmt.education

Post-order Traversal
Post order traversal follows the order:
left subtree, right subtree, root node.

Using the outline method, nodes are
traversed in the order in which they
are passed on the right, beginning at
the left of the root node.

Order: 7, 5, 10, 12, 11, 9, 34, 25, 20,
15

Manipulating Data Structures

Lists

List Operations Description

isEmpty() Checks if the list is empty

append(value) Adds a new value to the end of the list

remove(value) Removes the value the first time it occurs
in the list

search(value) Searches for a value in the list.

length() Returns the length of the list

index(value) Returns the position of the item

insert(position, value) Inserts a value at a given position

pop() Returns and removes the last item in the
list

pop(position) Returns and removes the item at the given
position

Queues

Queue Operations Description

enQueue(value) Adds a new item to the end of the queue

deQueue() Removes the item from the front of the queue

www.pmt.education

isEmpty() Checks if the queue if empty

isFull() Checks if the queue is full

Linked List
The following procedure is used to add the word ‘OCR’ after the word ‘Example’:

Index Data Pointer

0 ‘Linked’ 2

1 ‘Example’ 0

2 ‘List’ -

3

1. Add the new value to the end of the linked list and update the ‘NextFree’ pointer.

3 ‘OCR’

 Start = 1 NextFree=4

2. The pointer field of the word ‘Example’ is updated to point to ‘OCR’, at position 3.

1 ‘Example’’ 3

3. The pointer field of the word ‘OCR’ is updated to point to ‘Linked’, at position 0.

3 ‘OCR’ 0

4. When traversed, this linked list will now output ‘Example’, ‘OCR’, ‘Linked’, ‘List’.

The following procedure is used to remove the word ‘List’ from the original linked list:

1. Update the pointer field of ‘Example’ to point to ‘List’ at index 2.

0 ‘Linked’ 2

www.pmt.education

1 ‘Example’ 2

2 ‘List’ -

2. When traversed, this linked list will now print ‘Example’, ‘List’.

Stacks

Stack Operations Example Description

isEmpty() Stack.isEmpty()
>> True

Checks if the stack is
empty. Works by checking
the value of the top pointer.

push(value) Stack.append(“Nadia”)
>>
Stack.append(“Elijah”)
>>

Adds a new value to the end
of the list. Needs to check
that the stack is not full
before pushing to the stack.

peek() Stack.peek()
>> “Elijah”

Returns the top value from
the stack. First checks the
stack is not empty by
looking at value of top
pointer.

pop() Stack.pop()
>> “Elijah”

Removes and returns the
top value of the stack. First
checks the stack is not
empty by looking at value of
top pointer.

size() Stack.size()
>> 2

Returns the size of the stack

isFull() Stack.isFull()
>> False

Checks if the stack if full
and returns a Boolean
value. Works by comparing
stack size to the top pointer.

www.pmt.education

