

OCR Computer Science A Level

1.4.1 Data Types

Concise Notes

Specification:

1.4.1 a)

- Primitive data types
 - Integer
 - Real / floating point
 - Character
 - String
 - o Boolean

1.4.1 b)

• Represent positive integers in binary

1.4.1 c)

- Negative numbers in binary
 - Sign magnitude
 - o Two's complement

1.4.1 d)

Addition and subtraction of binary integers

1.4.1 e)

• Represent positive integers in hexadecimal

1.4.1 f)

• Convert positive integers between binary, hexadecimal and denary

1.4.1 g)

• Representation and normalisation of floating point numbers in binary

1.4.1 h)

- Floating point arithmetic
 - Positive and negative numbers
 - Addition and subtraction

1.4.1 i)

- Bitwise manipulation and masks
 - Shifts
 - o Combining with AND, OR, and XOR

1.4.1 j)

- How character sets are used to represent text
 - ASCII
 - Unicode

Data Types

Integer	-88							
A whole number	0							
Zero is an integer Negative numbers are integers.	0							
Negative numbers are integersCan't have a fractional part	15							
 Useful for counting things 								
s coolar for coolaring timings								
Real								
 Positive or negative numbers 	-75.3							
 Can, but do not necessarily, have a fractional 	5.66							
part								
 Useful for measuring things 	15							
 All integers are real numbers 								
Character								
A single symbol used by a computer	R							
The letters A to Z	1-							
• The numbers 0 to 9	ほ							
Symbols like %, £, and, □								
String								
A collection of characters	Hello!							
Can be used to store a single character	07054							
 Can also be used to store many characters in succession 	07954							
Useful for storing text								
 Don't cut off leading 0s like numeric types 								
Don't cut on leading of the numeric types								
Boolean	True							
 Restricted to True and False 	[]							
 Useful for recording data that can only take two 	False							

values

Representing Positive Integers in Binary

- A single binary digit is called a bit
- Eight binary digits can be combined to form a byte
- Half a byte (four bits) is called a nybble
- The least significant bit of a binary number is the one furthest to the right
- The most significant bit is furthest to the left

Binary Addition

When adding binary, there are four simple rules to remember:

1.
$$0 + 0 + 0 = 0$$

$$2. \ 0 + 0 + 1 = 1$$

3.
$$0 + 1 + 1 = 10$$

$$4. 1 + 1 + 1 = 11$$

Negative Numbers in Binary

- Binary can represent negative numbers using a few different methods, we cover:
 - Sign magnitude
 - Two's complement
- These methods give a special meaning to certain bits

Sign Magnitude

- The equivalent of adding a + or sign in front of a number
- A leading 1 is added for a negative number
- A leading 0 is added for a positive number

Two's Complement

- Has the added advantage of making binary arithmetic with negative numbers much more simple
- Works by making the most significant bit negative
- Converting to two's complement is as simple as flipping all of the bits in the positive version of a binary number and adding one

Subtracting in Binary using Two's Complement

- Two's complement makes subtraction in binary easy
- Subtracting a number from another is the same as adding a negative number
- To subtract in binary, use binary addition with a negative two's complement number

Hexadecimal

- Hexadecimal is base 16
- The characters 0-9 are as usual
- The characters A-F represent 10-15
- Place values start with 1 (16°) and go up in powers of 16.

Decimal															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
						ŀ	Hexad	ecima	al						

Converting from hexadecimal to binary

- First convert each hexadecimal digit to a decimal number
- Convert these to a binary nybble
- Combine the nybbles to form a single binary number

Converting from hexadecimal to decimal

- First convert to binary, as explained above, and then convert from binary to decimal
- Alternatively, use the place values of hexadecimal to convert directly to decimal

Floating Point Numbers in Binary

- Floating point binary is similar to scientific notation
- Floating point numbers can be split into two parts:
 - Mantissa
 - Exponent
- The mantissa is always taken to have the binary point after the most significant bit
- Next convert the exponent to decimal
- Move the binary point according to the exponent

Normalisation

- Maximises precision in a given number of bits
- To normalise a binary number:
 - Adjust the mantissa so that it starts 01 for a positive number of 10 for a negative number

Addition and Subtraction of Floating Point Numbers

Addition

- To add floating point binary numbers, their exponents need to be the same
- Then add the mantissas
- Finally, normalise the result if required

Subtraction

- Involves converting to two's complement and adding
- The exponents must be the same
- Use binary addition on the mantissas
- Normalise the result if required

Bitwise Manipulation and Masks

Shifts

- A shift performed on binary numbers is called a logical shift
- There are two varieties:
 - Logical shift left
 - Logical shift right
- Involves moving all of the bits in a binary number a specified number of places to the right or to the left
- Can be thought of as adding a number of leading or trailing zeros
- The result is a multiplication (or division if shifting right) by two to the power of the number of places shifted
- A logical shift left by one place has the effect of doubling the initial number

Masks

Can be applied to binary numbers by combining them with a logic gate

Character Sets for Representing Text

- A published collection of codes and corresponding characters
- Can be used by computers for representing text
- Two widely used character sets are ASCII and Unicode

ASCII

- American Standard Code for Information Interchange
- The leading character set before Unicode
- Uses 7 bits to represent 2^7 = 128 different characters
- ASCII soon came into trouble when computers needed to represent other languages with different characters

Unicode

- Solves the problem of ASCII's limited character set
- Uses a varying number of bits allowing for over 1 million different characters
- Many characters have yet to be allocated
- Enough capacity to represent a wealth of different languages, symbols, and emoji