
 
 
 
 
 
 
 
 

OCR Computer Science A Level 
 

1.4.2 Data Structures 
Advanced Notes 

 
  

www.pmt.education



Specification  
 
1.4.2 a)  

● Arrays 
● Records 
● Lists 
● Tuples 

 
1.4.2 b)  

● Linked List 
● Graphs 
● Stack 
● Queue  
● Tree 
● Binary Search Tree  
● Hash Table 

 
1.4.2 c) 

● Traversing data structures 
● Adding data and removing data from data structures  

 
 
 
 
  

www.pmt.education



Arrays, Records, Lists, and Tuples 
 

Arrays 
An array is an ordered, finite set of elements of a single type. A 1D (one-dimensional) 
array is a linear array. Unless stated in the question, arrays are always taken to be 
zero-indexed. This means that the first element in the array is considered to be at position 
zero. Below is an example of a one-dimensional array: 
________________________________________________________________________ 
oneDimensionalArray = [1, 23, 12, 14, 16, 29, 12]  //creates a  

1D array 
print(oneDimensionalArray[3])  

>> 14 
________________________________________________________________________ 
 
A two-dimensional array can be visualised as a table or spreadsheet . When searching 
through a 2D array, you first go down the rows and then across the columns  to find a given 
position. This is the reverse to the method used to find a set of coordinates. Below is an 
example involving a two-dimensional array. 
________________________________________________________________________ 
twoDimensionalArray = [[123, 28, 90, 38, 88, 23, 47],[1, 23, 12, 
14, 16, 29, 12]]  
 
print(twoDimensionalArray)  

>> [[23,  28,  90,  38,  88,  23,  47], 
    [ 1,  23,  12,  14,  16,  29,  12]] 

 
print(twoDimensionalArray[1,3])       // Goes down and then across 

>> 14 
________________________________________________________________________ 
 
A three-dimensional array can be visualised as a multi-page spreadsheet and can be 
thought of as multiple 2D arrays. Selecting an element in a 3D array requires the following 
syntax to be used: threeDimensionalArray[z,y,x], where z is the array number, y 
is the row number and x is the column number.  
________________________________________________________________________ 
threeDimensionalArray = [[[12,8],[9,6,19]],[[241,89,4,1],[19,2]]] 
print(threeDimensionalArray[0,1,2])   

>> 19 
________________________________________________________________________ 
  

www.pmt.education



Records 
A record is more commonly referred to as a row in a file and is made up of fields. Records 
are used in databases, as shown in the table below: 
 

ID FirstName Surname 

001 Antony Joshua 

002 Tyson Fury 

003 Deonte Wilder 
 
Above is a file containing three records, where each record has three fields. A record is 
declared in the following manner: 
________________________________________________________________________ 
fighterDataType = record  

integer  ID 
string FirstName  
string  Surname 

end record 
________________________________________________________________________ 
 
Each field in the record can be identified by recordName.fieldName. First, however, 
the record must be created. When creating a record, a variable must first be declared: 
fighter : fighterDataType 
Then its attributes can be accessed, using the following syntax: 
fighter.FirstName 
 
Lists  
A list is a data structure consisting of a number of ordered items where the items can 
occur more than once. Lists are similar to 1D arrays and elements can be accessed in the 
same way. The difference is that list values are stored non-contiguously . This means they 
do not have to be stored next to each other in memory, as data in arrays is stored. Lists 
can also contain elements of more than one data type, unlike arrays. 
 
Manipulating lists 
There are a range of operations that can be performed involving lists, described in the 
table below. The following structure is used when manipulating lists: 
______________________________________________________________________ 
List = [23, 36, 62, 49 , 23, 29, 12] 
List.function(Parameters) 
______________________________________________________________________ 

www.pmt.education



List Operations  Example  Description  

isEmpty() List.isEmpty() 
>> False  

Checks if the list is empty  

append(value) List.append(15) 
>> 

Adds a new value to the 
end of the list 

remove(value) List.remove(23) 
>> 

Removes the value the first 
time it appears in the list 

search(value) List.search(38) 
>> False 

Searches for a value in the 
list. 

length() List.length() 
>> 7 

Returns the length of the 
list  

index(value) List.index(23) 
>> 0  

Returns the position of the 
item 

insert(position, value)  List.insert(4,25) 
>> 

Inserts a value at a given 
position 

pop() List.pop() 
>>12 

Returns and removes the 
last value in the list 

pop(position) list.pop(3)  Returns and removes the 
value in the list at the given 
position 

 
 
Tuples  
An ordered set of values of any type is called a tuple. A tuple is immutable , which means it 
cannot be changed: elements cannot be added or removed once it has been created. 
Tuples are initialised using regular brackets instead of square brackets. 
________________________________________________________________________ 
tupleExample = (“Value1”, 2, “Value3”)  
 
Elements in a tuple are accessed in a similar way to elements in an array, with the 
exception that values in a tuple cannot be changed or removed. Attempting to do so will 
result in a syntax error. 
 
print(tupleExample[0]) 

>> Value1 : 
tupleExample[0] = “ChangedValue” 

>> Syntax Error 
________________________________________________________________________ 

www.pmt.education



Linked Lists, Graphs, Stacks, Queues, and Trees 
 
Linked Lists 
A linked list is a dynamic data structure used to hold an ordered sequence. The items 
which form the sequence do not have to be in contiguous data locations. Each item is 
called a node , and contains a data field  alongside another address called a link or pointer 
field.  

Index Data  Pointer 

0 ‘Linked’ 2 

1 ‘Example’ 0 

2 ‘List’ - 

3   

 
        Start = 1       NextFree=3  

 
The data field contains the value of the actual data which is part of the list. The pointer 
field contains the address of the next item in the list. Linked lists also store the index of the 
first item in the list as a pointer - which in this case is ‘Example’ at position 1  - as well as a 
pointer identifying the index of the next available space, which is 3 in our example. When 
traversing a linked list, the algorithm begins at the index given by the ‘Start’ pointer and 
outputs the values at each node until it finds that the pointer field is empty or null. This 
signals that the end of the linked list has been reached.  
 
Traversing the linked list above would produce: 
 
‘Example’, ‘Linked’, ‘List’ 
 
Manipulating a linked list 
One advantage of using linked lists is that values can easily be added or removed by 
editing pointers. The following procedure is used to add the word ‘OCR’ after the word 
‘Example’: 
 

1. Add the new value to the end of the linked list and update the ‘NextFree’ pointer. 
 

3 ‘OCR’  

 
        Start = 1       NextFree=4 

www.pmt.education



2. The pointer field of the word ‘Example’ is updated to point to ‘OCR’, at position 3.

1 ‘Example’’ 3 

3. The pointer field of the word ‘OCR’  is updated to point to ‘Linked’, at position 0.

3 ‘OCR’ 0 

4. When traversed, this linked list will now output ‘Example’, ‘OCR’, ‘Linked’, ‘List’.

Removing a node also involves updating nodes, this time to bypass the deleted node. 
The following procedure is used to remove the word ‘Linked’ from the original linked list:

1. Update the pointer field of ‘Example’ to point to ‘List’ at index 2.

0 ‘Linked’ 2 

1 ‘Example’ 2 

2 ‘List’ - 

2. When traversed, this linked list will now print ‘Example’, ‘List’.

As you can see, the node is not truly removed from the list, it 
is only ignored. Although this is easier, this wastes memory. 
Storing pointers also means more memory is required 
compared to an array. As items in linked lists are stored in a 
sequence, they can only be traversed in this order; an item 
cannot be directly accessed, as is possible in an array.  

Graphs 
A graph is a set of vertices/nodes connected by edges/arcs . Graphs can be placed into the 
following categories: 

- Directed Graph: The edges can only be traversed in one direction.
- Undirected Graph: The edges can be traversed in both directions.
- Weighted Graph: A cost is attached to each edge.

Computers are able to process graphs by using an  adjacency matrix or an adjacency list. 

www.pmt.education



Adjacency Matrix 
 

 A B C D E 

A - 4 18 12 - 

B 4 - 5 - 8 

C 18 5 - 5 - 

D 12 - - - 3 

E - 8 - 3 - 
 
Adjacency List 
 

A →  {B:4, C:18, D:12} 

B →  {A:4, C:5, E:8} 

C →  {A:18, B:5, D:5} 

D →  {A:12, E:3} 

E →  {B:8, D:3} 
 
 

Adjacency Matrix Advantages Adjacency List Advantages 

Convenient to work with due to quicker access times  More space efficient for large, 
sparse networks 

Easy to add nodes  
 
Stacks  
A stack is a last in first out (LIFO) data structure. Items can only be added to or removed 
from the top of the stack. Stacks are key data structures in computer science; they are 
used to reverse an action, such as to go back a page in web browsers. The ‘undo’ buttons 
that applications widely make use of also utilise stacks. A stack can be implemented as 
either a static structure or a dynamic structure. Where the maximum size required is 
known in advance, static stacks are preferred, as they are easier to implement and make 
more efficient use of memory. 
 
Stacks are implemented using a pointer which points to the top of the stack, where the 
next piece of data will be inserted. 
 

www.pmt.education



Manipulating a stack 
There are numerous operations that can be performed on a stack and that you need to be 
aware of. The following syntax must be used when calling a function on a stack: 
________________________________________________________________________ 
nameOfStack.function(Parameters) 
________________________________________________________________________ 
 

Stack Operations  Example  Description  

isEmpty() Stack.isEmpty() 
>> True  

Checks if the stack is 
empty. Works by checking 
the value of the top pointer. 

push(value) Stack.append(“Nadia”) 
>> 
Stack.append(“Elijah”) 
>> 

Adds a new value to the end 
of the list. Needs to check 
that the stack is not full 
before pushing to the stack. 

peek() Stack.peek() 
>> “Elijah” 

Returns the top value from 
the stack. First checks the 
stack is not empty by 
looking at value of top 
pointer. 

pop() Stack.pop() 
>> “Elijah” 

Removes and returns the 
top value of the stack. First 
checks the stack is not 
empty by looking at value of 
top pointer. 

size() Stack.size() 
>> 2 

Returns the size of the stack  

isFull() Stack.isFull() 
>> False 

Checks if the stack if full 
and returns a Boolean 
value. Works by comparing 
stack size to the top pointer. 

 
 
Queues  
A queue is a first in first out (FIFO) data structure; items are added to the end of the queue 
and are removed from the front of the queue. Queues are commonly used in printers, 
keyboards and simulators. There are a few different ways in which a queue can be 
implemented, but they all follow the same basic principles.  
 

www.pmt.education



A linear queue  is a data structure consisting of an array. Items are added into the next 
available space in the queue, starting from the front. Items are removed from the front of 
the queue. Queues make use of two pointers: one pointing to the front of the queue and 
one pointing to the back of the queue, where the next item can be added. 
 
Manipulating a queue 
The highlighted box shows the front of the queue. 
________________________________________________________________________ 
enQueue(Task3)  // enQueue(item) is how items are added to a queue 
 

Position 0  1  2  3  4  5 

Data Task1  Task2  Task3       

 
deQueue() // deQueue(item) is how items are removed from a queue 
 

Position 0  1  2  3  4  5 

Data   Task2  Task3       

 
enQueue(Task4) 
 

Position 0  1  2  3  4  5 

Data   Task2  Task3  Task4     

 
deQueue() 
 

Position 0  1  2  3  4  5 

Data     Task3  Task4     

________________________________________________________________________ 
As the queue removes items, there are addresses in the array which cannot be used 
again, making a linear queue an ineffective implementation of a queue.  
 
Circular queues  try to solve this. A circular queue operates in a similar way to a linear 
queue in that it is a FIFO structure. However, it is coded in a way that once the queue’s 
rear pointer is equal to the maximum size of the queue, it can loop back to the front of the 
array and store values here, provided that it is empty. Therefore, circular queues can use 
space in an array more effectively, although they are harder to implement. 
Below is an example illustrating how the rear pointer in a circular queue works: 

www.pmt.education



________________________________________________________________________ 
enQueue(Task5) 

Position  0  1  2  3  4  5 

Data      Task3  Task4  Task5   

rearPointer : 4  
maxSize : 5 
 
enQueue(Task6) 

Position  0  1  2  3  4  5 

Data      Task3  Task4  Task5  Task6 

rearPointer : 5 
maxSize : 5  
 
enQueue(Task7) 

Position  0  1  2  3  4  5 

Data  Task7    Task3  Task4  Task5  Task6 

rearPointer : 0 
maxSize : 5  
 
Operations on a queue are performed using the syntax below: 
nameOfQueue.function(Parameters) 
________________________________________________________________________ 
 

Queue Operations  Example  Description  

enQueue(value) Queue.enQueue(“Nadia”) 
>>  
Queue.enQueue(“Elijah”) 
>> 

Adds a new item to the end 
of the queue. Increments 
the back pointer. 

deQueue() Queue.deQueue() 
>> 

Removes the item from the 
front of the queue. 
Increments the front pointer. 

isEmpty() Queue.isEmpty() 
>> False 

Checks if the queue if empty 
by comparing the front and 
back pointer. 

isFull() Queue.isFull() 
>> False 

Checks if the queue is full 
by comparing the back 
pointer and queue size. 

www.pmt.education



Trees  
A tree is a connected form of a graph. Trees have a root node  which is the top node in any 
tree. Nodes are connected to other nodes using branches, with the lower-level nodes 
being the children of the higher-level nodes.  
 
Below are some terms you should be familiar with: 
 

Node An item in the tree 

Edge Connects two nodes 
together and is also known 
as a branch, or arc 

Root A single node which does 
not have any incoming 
nodes 

Child A node with incoming edges 

Parent A node with outgoing edges 

Subtree Subsection of a tree 
consisting of a parent and all 
the children of a parent 

Leaf A node with no children 
 
A binary tree is a type of tree in which each node has a  maximum of two children. These 
are used to represent information for binary searches, as information in these trees is  easy 
to search through. The most common way to represent a binary tree is storing each node 
with a left pointer and a right pointer. This information is usually implemented using 
two-dimensional arrays. 
 

Index Left 
Pointer 

Data 
Value 

Right 
Pointer 

0 1 G 3 

1 2 C 4 

2 - A - 

3 - J 5 

4 - F - 

5 - L - 

www.pmt.education



 
Traversing a binary tree 
There are three methods of traversing a binary tree: Pre-order, In-order and Post-order.  
A simple way of remembering these is using the outline method , which is described below.  
 
Pre-order Traversal  
Pre-order traversal follows the order: root node, left subtree, then right subtree.  
Using the outline method, nodes are traversed in the order in which you pass them on the 
left, beginning at the left-hand side of the root node.  
Pre-order traversal is used in programming languages in which the operation is written 
before the values. This means  a + b would be written as + a b, as shown in the diagram.  
 
 
 
 

 
 

 
 
 
 
 
 
The order of traversal is: 15, 9, 5, 7, 11, 10, 12, 20, 25, 34 
 
In-order Traversal 
In-order traversal follows the order: left subtree, root node, right subtree.  
Using the outline method, nodes are traversed in the order in which you pass under them, 
beginning at the first node from the left which does not have two child nodes.  
This is useful for traversing the nodes in sequential order.  
 
 
 
 
 
 
 
 
 
 
 
 

www.pmt.education



Order: 5, 7, 9, 10, 11, 12, 15, 20, 25, 34 
Post-order Traversal 
Post order traversal follows the order: left subtree, right subtree, root node.  
Using the outline method, nodes are traversed in the order in which you pass them on the 
right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Order: 7, 5, 10, 12, 11, 9, 34, 25, 20, 15  
 
 
Hash Tables 
A hash table is an array which is coupled with a hash 
function. The hash function takes in data (a key) and 
releases an output ( the hash). The role of the hash function 
is to map the key to an index  in the hash table.  
 
Each piece of data is mapped to a unique value using the 
hash function. However, it is sometimes possible for two 
inputs to result in the same hashed value. This is known as a 
collision. A good hashing algorithm  should have a low 
probability of collisions occurring but in the event that it does occur, the item is typically 
placed in the next available location. This is called collision resolution. 
 
Hash tables are normally used for indexing , as they provide fast access to data due to 
keys having a unique, one-to-one relationship with the address at which they are stored..  
 

www.pmt.education


