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Specification: 
 
1.4.1 a) 

● Primitive data types 
○ Integer 
○ Real / floating point 
○ Character 
○ String 
○ Boolean 

1.4.1 b) 
● Represent positive integers in binary 

1.4.1 c) 
● Negative numbers in binary 

○ Sign magnitude 
○ Two’s complement 

1.4.1 d) 
● Addition and subtraction of binary integers 

1.4.1 e) 
● Represent positive integers in hexadecimal 

1.4.1 f) 
● Convert positive integers between binary, hexadecimal and 

denary 
1.4.1 g) 

● Representation and normalisation of floating point numbers in 
binary 

1.4.1 h) 
● How character sets are used to represent text 

○ ASCII 
○ Unicode 
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Data Types 
 
The way in which data is represented varies between different types of data. When writing 
a program, it’s essential to make sure data is being stored with the right  data type, so that 
the right operations can be performed on it. 
 
Integer 
An integer is a whole number . Integers include zero and negative numbers, they just can’t 
have a fractional part . Integers are useful for counting things. 
 

6  47238  -12  0  15 
 
Real 
Real numbers are positive or negative numbers which can, but do not necessarily, have a 
fractional part . Reals are useful for measuring things. 
 

0  -71.5  5.01  -80.8  15 
 
Character 
A character is a single symbol used by a computer. These include the letters A to Z, the 
numbers 0 to 9 and hundreds of symbols like %, £ and �. 
 

R  {  7  Σ  ほ 
 
String 
A string is a collection of characters. While a string can be used to store a single character, 
they can also be used to store many characters in succession. Strings are useful for 
storing text. 

 

Hello, world!  54jR 
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Boolean 
Values taken by a Boolean data type are restricted to True and False. Booleans are 
useful for recording data that can only take two values, like the state of a power button or 
whether a line of code has been executed. 
 

True  False 
 
 

Representing Positive Integers in Binary 
 
As explained earlier, integers are whole numbers. Computers can store whole numbers 
using binary. Just like humans count in base 10, computers count in base 2, where each 
step in place represents a value of two times the previous place. 
 
A single binary digit is called a bit, and eight binary digits can be combined to form a byte. 
 
Binary to Decimal 
The least significant bit of a binary number is the one furthest to the right, while the  most 
significant bit is furthest to the left. When representing positive integers, the least 
significant bit always represents a value of 1, with the 2nd least significant bit representing 
a value of 2, then 4, 8 etc. 
 

8 (23)  4 (22)  2 (21)  1 (20) 

1  1  0  1 
 
The diagram above shows the place value of each digit, as well as the digit’s value (either 
a 0 or a 1). To work out what the number is, multiply the digit by its place value and add to 
a total. 
 
For the diagram above, we have  (8×1)+(4×1)+(2×0)+(1×1) = 13  so the binary 
1101 is 13 in decimal. 
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Decimal to Binary 
If you have a decimal (denary) number to convert into binary, the first step is to find the 
largest power of two  which is smaller than the number you’re converting. Then write out 
place values in powers of two up to this power. 
 
For example, if we were converting the decimal 47 into binary, we would write out place 
values up to 32. 64 is the next power of two and it’s greater than 47 so we don’t write it. 
 

32 (25)  16 (24)  8 (23)  4 (22)  2 (21)  1 (20) 

 
Now we need to place a 1 or a 0 in each position so that the total adds up to 47. Starting 
from the most significant bit (left hand side) we write a 1 if the place value is less than or 
equal to  our value and a 0 otherwise . If we write a 1, then we subtract the place value from 
our value and use the result for the next stage. 
 
For example: the most significant bit has a value of 32, which is less than 47. Therefore, 
we write a 1 under 32 and subtract 32 from 47 giving us a new value of 15. 
 

32  16  8  4  2  1 

1           
 
We now look at the next most significant bit, and follow the same steps as before. This 
time the bit represents 16 and our value is 15. The bit value is greater than our value and 
so we place a 0. 
 

32  16  8  4  2  1 

1  0         
 
Next up is 8, smaller than 15. Therefore we place a 1 and our new value is 15-8 = 7. 
 

32  16  8  4  2  1 

1  0  1       
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The next most significant bit is 4. 4 is smaller than 7 and so we place a 1. Our new value is 
7-4 = 3. 
 

32  16  8  4  2  1 

1  0  1  1     
 
Next up is 2, again smaller than our value of 3. We place a one and our new value is 1. 
 

32  16  8  4  2  1 

1  0  1  1  1   
 
Finally, the bit represents 1 and our value is 1, so we place a 1. 
 

32  16  8  4  2  1 

1  0  1  1  1  1 
 
We now have that the binary 101111 represents the decimal number 47. You can check 
your conversion using the method explained earlier for converting from binary to decimal. 
 
It’s not unusual to see binary numbers represented as a whole number of bytes  (a multiple 
of eight bits) by adding leading zeros. This does not affect the value of the number. To be 
represented as a byte, 47 would be written as 00101111, with two leading 0s. 
 

Binary Addition 
When adding binary, there are four simple rules to remember: 
 

1.  0 + 0 + 0 =  0 

2.  0 + 0 + 1 =  1 

3.  0 + 1 + 1 = 10 

4.  1 + 1 + 1 = 11 
 
Remember that 10 in binary is 2 in decimal and 11 is three. 
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Example: Add the binary numbers 1011 and 1110. 

 

  1  0  1  1 

+  1  1  1  0 

 

  1  0  1  1 

+  1  1  1  0 

        1 

 

  1  0  1  1 

+  1  1  1  0 

      1  0  1 

 

  1  0  1  1 

+  1  1  1  0 

    1  01  0  1 

 

  1  0  1  1 

+  1  1  1  0 

1  11  01  0  1 

 
 

1  1  0  0  1 

 

 
Place the two binary numbers above each other so that the 
digits line up. 
 
 
Starting from the least significant bits (the right hand side), 
add the values in each column  and place the total below. 
For the first column (highlighted), rule 2 from above 
applies. 
 
 
Move on to the next column. This time rule 3 applies. In the 
case that the result of addition for a single column is more 
than one digit, place the first digit of the result in small 
writing under the next most significant  bit’s column. 
 
 
On to the next column, where there is a 0, a 1 and a small 
1. In this case, rule 3 applies again. Therefore the result is 
10. Because 10 is two digits long , the 1 is written in small 
writing under the next most significant bit’s column. 
 
Moving on to the most significant column where there are 
three 1s. Rule 4 applies, so the result for this column is 11. 
The first digit of the result is written under the next most 
significant bit’s column, but it can be written full size as 
there are no more columns to add. 
 
Finally, the result is read off from the full size numbers  at 
the bottom of each column. In this case, 1011 + 1110 = 
11001. 

After carrying out binary addition, it’s a good idea to check your answer by converting to 
decimal if you have time. 
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Negative Numbers in Binary 
 
So far we’ve covered conversion between decimal and binary for positive integers. 
However, binary can represent negative numbers  using a few different methods. These 
methods set out rules for how a bit string should be treated, giving a special meaning to 
certain bits which allows for the representation of negative numbers. 
 
Sign Magnitude 
The most basic way to represent negative numbers in binary is called sign magnitude 
representation. This is the equivalent of adding a + or - sign  in front of a number. However, 
binary can only use 0s and 1s, so we have to somehow represent + and - using 0 and 1. 
 
The convention used is that a leading 1 is added for a negative number, and a  leading 0 is 
added for a positive number. 
 
For example, the binary 1101 represents the decimal number 13. Converting to sign 
magnitude means adding a 0, or to represent -13, add a leading 1. 
 

Binary 
13 

Sign Magnitude  
+13 

Sign Magnitude 
-13 

1101   01101   11101  
 
Converting from sign magnitude to decimal is as simple as making a note of the most 
significant bit, remembering the sign and discarding the leading bit. Then convert the 
remaining bits to decimal using the method explained earlier and add the sign. 
 
For example, the sign magnitude number 10110 is negative, because it starts with a 1. 
Remove the 1 and we’re left with 0110 which is 6 (4+2) in decimal. Add on the minus 
sign and we have our result: -6. 
 
Two’s Complement 
Another method of representing negative numbers in binary, two’s complement has the 
added advantage of making binary arithmetic with negative numbers much more simple. 
 
Two’s complement works by making the most significant bit negative. For example, with 
four bits (half a byte) the most significant bit, usually 8, represents -8. 
 
Converting to two’s complement is as simple as flipping all of the bits in the positive 
version of a binary number and adding one. For example, the binary half-byte representing 
7 is 0111. Flip all the bits and you get 1000, adding one gives us 1001. 
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Writing in the bit values, we can see how this works. 
 

-8  4  2  1 

1  0  0  1 
 
Calculating the equivalent in decimal, using the method explained earlier, we have: 
 

(-8×1)+(4×0)+(2×0)+(1×1) = -7 
 
 
 

Subtracting in Binary using Two’s Complement 
 
Two’s complement makes subtraction in binary easy. Subtracting a number from another 
is the same as adding a negative number. This is how binary subtraction works. 
 
Example: Subtract 12 from 8. 

 
 

  -16  8  4  2  1 

  0  1  0  0  0 

+  1  0  1  0  0 

  1  1  1  0  0 

 

In five bit two’s complement, 8 is 01000 and -12 is 
10100. Five is the minimum  number of bits 
required in order to represent -12. 
 
The two’s complement numbers are then added 
using the same technique for adding that was 
explained earlier before the result can be read off 
as 11100. 
  
Checking the result, -16 + 8 + 4 = -4 so the 
calculation is correct. 
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Hexadecimal 
 
In the same way that decimal is base 10, and binary is base 2, hexadecimal is base 16 . In 
addition to the numbers 0-9, hexadecimal makes use of the characters A-F to represent 
10-15. 
 
 

Decimal 

0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 

Hexadecimal 
  
 
Just like binary, place values in hexadecimal start with 1 (160) and go up in powers of 16. 
 
For example, the hexadecimal number 2D3 = 723 
 

256 (162)  16 (161)  1 (160) 

2  D  3 
 
Remembering that E represents 14 in decimal and that F represents 15, we have: 
 

(2×256)+(13×16)+(3×1) = 723 
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Converting from hexadecimal to binary 
To convert hexadecimal to binary, first convert each hexadecimal digit to a decimal digit 
and then to a binary nybble (four bits, half a byte) before combining the nybbles to form a 
single binary number. 
 

  B2   
 Split into hexadecimal digits 

 

  B 2 
 Convert hexadecimal to decimal 

  11   2 
 Convert decimal to binary nybbles 

  1011 0010 

 Combine binary nybbles 

 

  10110010 
 

128 64 32 16 8 4 2 1 

1  0  1  1  0  0  1  0 
 

128 + 32 + 16 + 2 = 178 

 
B2 = 178 
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Converting from hexadecimal to decimal 
One way to convert from hexadecimal to decimal is to  first convert to binary, as explained 
above, and then convert from binary to decimal . Alternatively, use the place values of 
hexadecimal to convert directly to decimal. 
 

256 (162)  16 (161)  1 (160) 

4  C  3 
 
For example, 4C3 in hexadecimal is (4×256)+(12×16)+(3×1) = 1219 
 

Floating Point Numbers in Binary 
 
You can think of floating point binary as being like scientific notation. Take the following 
example: 

 
 
Floating point numbers can be split into two parts: mantissa and exponent. In this case, 
the mantissa is 6.67 and the exponent is -11. When combined, the mantissa and exponent 
provide all the information needed to work out the actual value being represented. 
 
In this case, the scientific notation represents the value 0.0000000000667. The value 6.67 
is shifted 11 times from the decimal point. 
 
We can do the same in binary, provided that we include information about the size of the 
mantissa and exponent. We also dedicate a single bit to the sign - whether a number is 
positive or negative. 
 
Take for example a structure with a leading sign bit, an 8-bit mantissa and a 4-bit two’s 
complement exponent. 
 

S    M    E 

0    1  1  0  0  1  0  0  1    0  1  0  1 

 
Just as before, a sign of 0 represents a positive number and a 1 represents a negative 
number.  
 
The mantissa is always taken to have the binary point (the equivalent of a decimal point, 
but in binary) after the most significant bit. So this mantissa is actually 1.1001001. 
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Next we convert the exponent to decimal using the method explained earlier. In this case, 
the exponent is 5. 
 
Combining the three parts, we need to move the binary point five places to the right, giving 
us 110010.01. We can then convert this to decimal as follows: 
 

32  16  8  4  2  1    0.5 
(2-1) 

0.25 
(2-2) 

1  1  0  0  1  0  •  0  1 
 

32 + 16 + 2 + 0.25 = 50.25 
 
 
Second example 
As before, we’re using a format with a single sign bit, an 8-bit mantissa and a 4-bit two’s 
complement exponent. 
 

S    M    E 

1    0  1  0  1  1  0  0  0    1  1  0  1 

 
The sign is 1 and so we’re dealing with a negative number. The mantissa is 0.101101000 
and the exponent is (remembering it’s in two’s complement) -8 + 4 + 1 = -3. 
 
We move the binary point from between the two most significant bits of the mantissa three 
places to the left, giving us 0.0001011. 
 

1    2
1   4

1   8
1   1

16  
1
32  

1
64  

1
128  

0  •  0  0  0  1  0  1  1 
 
Which is  in base 10.11

128  
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Normalisation 
 
Floating point numbers are normalised in order to provide the maximum level of precision 
for a given number of bits. Normalisation involves ensuring that floating point numbers 
start with 01 (for a positive number) or 10 (for negative numbers). 
 
Example: Normalise the binary number 00100101 which is a floating point number with a 
four bit mantissa and a four bit exponent . 
 
First, split the number into mantissa and exponent. 
 

0 0 1 0  0 1 0 1 
Mantissa  Exponent 

Next, adjust the mantissa  so that it starts 01 or 10. In this case, because we’re dealing 
with a positive number, we will move all of the bits one place to the left and add a zero to 
the end of the mantissa. Our new mantissa is 0100. 
 
Because we’ve made the mantissa bigger by shifting the bits one position to the left, we 
must reduce the exponent by one so as to ensure the same number is still represented . 
The current exponent is 5 10 so, subtracting one , the new exponent must be 410 which is 
01002 in binary. 
 

0 1 0 0  0 1 0 0 
Mantissa  Exponent 

We now have a mantissa that starts with the digits 01. A positive normalised number. 
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Character Sets for Representing Text 
 
A character set is a published collection of codes and corresponding characters which can 
be used by computers for representing text. 
 
Two widely used character sets are ASCII and Unicode. 
 
ASCII 
Standing for American Standard Code for Information Interchange, ASCII was the leading 
character set before Unicode. ASCII uses 7 bits to represent 2 7 = 128 different characters. 
The capital letters A-Z are represented by codes 65-90 while the lower case letters a-z 
correspond to codes 97-122. There are also codes for numbers and symbols. 
 
While 128 characters is plenty for standard letters, numbers and symbols, ASCII soon 
came into trouble when computers needed to represent other languages with different 
characters. 
 
Unicode 
Unicode solves the problem of ASCII’s limited character set. Unicode uses a varying 
number of bits allowing for over 1 million different characters, many of which have yet to 
be allocated. Because of this, Unicode has enough capacity to represent a wealth of 
different languages, symbols and emoji. 
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