

OCR Computer Science A Level

1.2.2 Applications Generation
Intermediate Notes

www.pmt.education

Specification:

Specification:

1.2.2 a)

● Nature of applications

1.2.2 b)
● Utilities

1.2.2 c)

● Open source vs closed source

1.2.2 d)

● Translators
○ Interpreters
○ Compilers
○ Assemblers

1.2.2 e)

● Stages of compilation
○ Lexical analysis
○ Syntax analysis
○ Code generation
○ Optimisation

1.2.2 f)

● Linkers, loaders and use of libraries

www.pmt.education

Nature of applications

Software can either be categorised as applications software or systems software.

Applications software
Designed to be ​ used by the end-user to perform one specific task ​. Application software
requires systems software in order to run.
Examples: ​desktop publishing, word processing, spreadsheets ​, ​web browsers.

Systems software
Low-level software responsible for managing the computer resources ​ and maintaining
consistently high performance.
Examples: ​library programs, utility programs, operating system, device drivers.

Utilities
Utilities ensure the ​consistent, high performance​ of the operating system. Each utility
program has a ​specific function​ linked to the ​maintenance of the operating system.

Examples include:

- Compression
Used to decompress and compress files.
Examples: ​decompressing files
downloaded online, compressing
large files for transmission across
the internet, compressing scanned
files

- Disk defragmentation
As the hard disk becomes full, read/write times slow down. This is because
files can no longer be stored contiguously. The disk defragmenter utility
rearranges the contents of the hard drive​ so they can be accessed faster.

- Antivirus
Detects potential threats​ to the computer, alerts the user and removes these
threats.

- Automatic updating
Automatically installs any updates to the operating system. Ensures there
are no security issues so the ​system is less vulnerable ​ to malware and
hacking threats.

- Backup
Routinely creates copies of files​ specified by the user. In the event of a
power failure, malicious attack or other accident, ​ files can be recovered ​.

www.pmt.education

Open source vs closed source

Source code is code written by a programmer and is ​object code before it has been
compiled​.

 Open source Closed Source

Definition Can be used by anyone without
a license and is ​distributed with
the source code ​.

Requires the user to hold an
appropriate license​ to use it.
Users ​cannot access the source
code​ as the ​company owns the
copyright license ​.

Advantages Can be modified and improved
by anyone

Thorough, regular and well-tested
updates

Technical support from online
community

Company owning software
provides expert support and user
manuals.

Can be modified and sold on High levels of security as
developed professionally.

Disadvantages Support available online may be
insufficient or incorrect. No user
manuals.

License restricts how many people
can use the software at once

Lower security as may not be
developed in a controlled
environment

Users cannot modify and improve
software themselves

Translators

A translator is a program that ​converts high-level source code into low-level object code ​,
which is then ready to be executed by a computer. There are three types of translator:

Compiler
Translate high-level code into machine code ​all at once​.
The ​initial compilation process is longer​ than using an
interpreter or an assembler.
Compiled code is ​specific to a particular processor type
and operating system ​ but can be run ​without a translator
present.

www.pmt.education

Interpreter
Translate and execute code line-by-line​. They stop and produce an error if a line contains
an error.
Initially appear faster ​ than compilers, but are ​slower than running compiled code ​ as ​code
must be interpreted each time it is executed. ​Code​ also requires the correct interpreter in
order to run​ on different devices.
Interpreters are useful for ​testing ​code, as time is not wasted compiling code with errors.
Code is also ​ platform-independent​, making interpreted code ​ more portable​.

Assembler

Assembly Code
A low-level language and is the ​‘next level up’ from
machine code​. Assembly code is ​platform specific ​.

Assemblers translate assembly code into machine code.
Each line of assembly code is equivalent to almost one
line of machine code ​.

Stages of compilation

High level code goes through four stages before it is fully compiled:

Lexical Analysis
Whitespace and comments are removed​ from the code. Keywords and names of variables
and constants are ​replaced with tokens​. Information about tokens is stored in a ​symbol
table​.

Syntax Analysis
Tokens are analysed against the rules of the programming language ​. Tokens that break
the rules are ​flagged up as syntax errors​.
Examples of syntax errors: ​undeclared variable type, incomplete set of brackets.
An ​abstract syntax tree is produced ​, which is a representation of the source code in the
form of a tree.
Semantic analysis​ is carried out where logic mistakes within the program are detected.
Examples of semantic errors: ​multiple declaration ​, ​undeclared identifiers

Code Generation
The abstract syntax tree is used to produce machine code.

www.pmt.education

Optimisation
Searches through the code for areas it could be made more efficient to ​ reduce execution
time ​but is a ​very time-consuming ​ of compilation.
Redundant parts of code are removed​. Repeated sections of code are replaced with more
efficient code. Excessive optimisation may alter the way in which the program behaves.

Linkers, Loaders and Use of Libraries

Linkers
A piece of software responsible for​ linking external modules and libraries included within
the code​.
Static Linker
Modules and libraries are ​added directly​ into the main file. This ​increases the size of the
file​.
Dynamic Linker
Addresses of modules and libraries​ are included in the file. ​File size does not change​ and
external module/library updates automatically feed through to the main file ​.

Loaders
Programs provided by the operating system. When a file with dynamically linked
addresses is executed, the ​loader retrieves the library or module from the specified
memory location​.

Use of Libraries
Pre-compiled programs ​which can be incorporated within other programs. They are
ready-to-use and error free​, so ​save time ​developing and testing modules. Libraries ​can be
reused ​ across multiple programs and ​save programmers from having to ‘reinvent the
wheel’​ and instead make use of others’ expertise.

www.pmt.education

