
OCR Computer Science A Level

1.2.4 Types of Programming Language
Concise Notes

www.pmt.education

Specification:

1.2.4 a)

● Programming paradigms
○ Need for these paradigms
○ Characteristics of these paradigms

1.2.4 b)
● Procedural languages

1.2.4 c)

● Assembly language
○ Following LMC programs
○ Writing LMC programs

1.2.4 d)
● Modes of addressing memory

○ Intermediate, Direct, Indirect, Indexed

1.2.4. e)

● Object-oriented languages
○ Classes
○ Objects
○ Methods
○ Attributes
○ Inheritance
○ Encapsulation
○ Polymorphism

www.pmt.education

Programming Paradigms

● Different ​approaches to using a programming language to solve a problem
● Split into two broad categories - imperative and declarative - which can be broken

down into more specific paradigms

Imperative

● Use code that ​clearly specifies the actions to be performed
Procedural

● Widely-used paradigms as it can be ​applied to a wide range of problems
● Easy to write and interpret
● Written as a ​sequence of instructions
● Instructions are carried out in a ​step-by-step manner

Object-Oriented
● Suited to problems which can be broken into reusable components with similar

characteristics
● Based on ​objects formed from classes​ which have ​attributes and methods
● Focuses on making programs that are ​reusable​ and ​easy to update and maintain

Declarative

● States the desired result​ and the programming language determines how best to
obtain the result

● Details about ​how result is obtained are abstracted from the user

www.pmt.education

Functional

● Functions​ form the core of the program
● Function calls​ are often combined within each other
● Closely linked to mathematics

Logic
● A ​set of facts and rules​ based on the problem is defined
● Queries ​are used to find answers to problems

Procedural Language

● Simple to implement​ and applicable to most problems
● Not possible to solve all kinds of problems ​or ​may be inefficient ​ to do so
● Provide traditional data types ​ and ​data structures
● Structured programming ​ is a popular subsection of procedural programming in

which the ​control flow ​is ​given by four main programming structures​:
○ Sequence
○ Selection
○ Iteration
○ Recursion

Assembly Language

● Low level language that is the ​next level up from machine code
● Uses mnemonics​, which are ​abbreviations for machine code instructions
● Commands used are ​processor-specific
● Each line in assembly language is equivalent to one line of machine code

Below is a list of the mnemonics you need to be aware of and be able to use:

Mnemonic Instruction Function

ADD Add Add the value at the given memory address to the
value in the Accumulator

SUB Subtract Subtract the value at the given memory address
from the value in the Accumulator

STA Store Store the value in the Accumulator at the given
memory address

LDA Load Load the value at the given memory address into the
Accumulator

www.pmt.education

INP Input Allows the user to input a value which will be held in
the Accumulator

OUT Output Prints the value currently held in the Accumulator

HLT Halt Stops the program at that line, preventing the rest of
the code from executing.

DAT Data Creates a flag with a label at which data is stored.

BRZ Branch if zero Branches to a given address if the value in the
Accumulator is zero. This is a conditional branch.

BRP Branch if positive Branches to a given address if the value in the
Accumulator is positive. This is a conditional branch.

BRA Branch always Branches to a given address no matter the value in
the Accumulator. This is an unconditional branch.

Modes of Addressing Memory

● Machine code instructions are made up of an ​opcode ​and ​operand
● Opcode ​specifies the instruction to be performed and the addressing mode
● Addressing mode specifies how the operand should be interpreted
● Operand holds a value related to the ​data on which the instruction is to be

performed
● There are four addressing modes you need to know:

○ Immediate Addressing
The operand is the ​actual value ​ upon which the instruction is to be
performed

○ Direct Addressing
The operand ​gives the address which holds the value ​ upon which the
instruction is to be performed

○ Indirect Addressing
The operand ​gives the address of a register which holds another
address, where the data is located

○ Indexed Addressing
An​ index register ​ is used, which stores a certain value. The address of
the operand is determined by ​adding the operand to the index register

www.pmt.education

Object Oriented Languages

Classes, Objects, Methods and Attributes
● A ​class ​is a​ template for an object ​ and defines the ​state and behaviour of an object
● State is given by ​attributes ​which give an ​object’s properties
● Behaviour is defined by the ​methods,​ which ​describe the actions it can perform
● Classes can be used to ​ create objects​ by a process called ​instantiation
● An ​object ​is a ​particular instance of a class ​, and a class can be used to create

multiple objects
● A ​setter ​is a method that​ sets the value of a particular attribute
● A ​getter ​is another special method used in OOP which ​ retrieves the value of a given

attribute
● Getters and setters ensure​ attributes cannot be directly accessed and edited ​ but

can only be altered by public methods ​. This is called ​encapsulation.
● Every class must also have a ​constructor method which ​allows a new object to be

created

Inheritance
● Process in which ​subclass ​inherits all of the methods and attributes ​ ​of the

superclass
● Subclass can also have its ​own additional properties

Polymorphism
● Enables ​objects to behave differently depending on their class

Overloading
● Passing in ​different parameters ​into a method

Overriding
● Redefining a method ​ so that it ​functions differently ​and ​produces a different output

Advantages of OOP
● High level of reusability
● Code made more reliable through encapsulation
● Makes code easy to maintain and update
● Classes can be reused as a black box which saves time and

effort
Disadvantages of OOP

● Requires an ​alternative style of thinking
● Not suited to ​all types of problems
● Generally ​unsuitable for smaller problems

www.pmt.education

