

OCR Computer Science A Level

1.2.3 Software Development Concise Notes

🕟 www.pmt.education

▶ Image: Contraction PMTEducation

Specification:

1.2.3 a)

• Programming methodologies

- Waterfall lifecycle
- Agile methodologies
- Extreme programming
- Spiral model
- Rapid application development

1.2.3 b)

• Merits, drawbacks and uses of programming methodologies

1.2.3 c)

• Writing and following algorithms

0

▶ Image: Second Second

Programming Methodologies

- Software development life cycles (SDLCs) all consist of the following stages:
 - Analysis
 - Design
 - Development
 - Testing
 - Alpha testing
 - Beta testing
 - White box testing
 - Black box testing
 - Implementation
 - Evaluation
 - Maintenance

Waterfall lifecycle

- Stages are completed in sequence, from start to finish
- Clear structure makes this a model that is easy to follow
- To make a change, programmers must revisit all stages in between
- Low user involvement

Agile methodologies

- Collection of methodologies which aim to improve the flexibility of SDLCs
- Adapt quickly to changes in user requirements.
- Different sections of the program are developed in parallel so can be at different stages of development simultaneously

• Working prototype is delivered early on and improved in an iterative manner

▶ Image: Contraction PMTEducation

- Less of a focus on documentation
- User satisfaction is prioritised

www.pmt.education

Extreme programming

- Example of an agile model
- Development team is a pair of programmers and a representative end-user
- 'User stories' are used to determine system requirements
- Produces high-quality code and highly-usable software
- Programmers work no longer than forty hours a week
- Hard to produce high quality documentation

Spiral model

- Used to manage risk-heavy projects
- Has four key stages:
 - Analysing system requirements
 - Pinpointing and mitigating risks
 - Development, testing and implementation
 - Evaluating to inform the next iteration
- Project terminated if too risky
- Specialist risk-assessors must be hired which is expensive

Rapid application development

- User requirements are gathered using focus group
- 'Incomplete' version of the solution is given to the user to trial
- User feedback is used to generate next, improved prototype
- Final prototype matches user requirements fully
- Used where user requirements are incomplete or unclear at the start
- Code may be inefficient

Writing and following algorithms

- Algorithm = A set of instructions used to solve a problem
- All good algorithms have certain key qualities:
 - Inputs must be clearly defined what is valid and what is invalid?
 - \circ $\,$ Must always produce a valid output for any defined input $\,$
 - Must be able to deal with invalid inputs
 - Must always reach a stopping condition
 - Must be well-documented for reference
 - Must be well-commented so modifications can easily be made

Merits, drawbacks and uses of programming methodologies

	Merits	Drawbacks	Uses
Waterfall	 Straightforward to manage Clearly documented 	 Lack of flexibility No risk analysis Limited user involvement 	Static, low-risk projects which need little user input, such as a piece of general-purpose software
Agile	 Produces high quality code Flexible to changing requirements Regular user input 	 Poor documentation Requires consistent interaction between user and programmer 	Small to medium projects with unclear initial requirements.
Extreme Programming	 Produces high quality code Constant user involvement means high usability 	 High cost of two people working on one project Teamwork is essential End-user may not be able to be present 	Small to medium projects with unclear initial requirements requiring excellent usability.
Spiral	 Thorough risk-analysis and mitigation Caters to changing user needs Produces prototypes throughout 	 Expensive to hire risk assessors Lack of focus on code efficiency High costs due to constant prototyping 	Large, risk-intensive projects with a high budget.
Rapid Application Development	 Caters to changing user requirements Highly usable finished product Focus on core features, reducing development time 	 Poorer quality documentation Fast pace and late changes may reduce code quality 	Small to medium, low-budget projects with short time-frames.

0)

▶ Image: Second Second