

AQA Computer Science A-Level
4.10 Fundamentals of databases

Intermediate Notes

www.pmt.education

Specification:

4.10.1 Conceptual data models and entity relationship modelling:

Produce a data model from given data requirements for a simple
scenario involving multiple entities

Produce entity relationship diagrams representing a data model and
entity descriptions in the form: Entity1 (Attribute1, Attribute2,)

4.10.2 Relational databases:

Explain the concept of a relational database
Be able to define the terms:

● attribute
● primary key
● composite primary key
● foreign key

4.10.3 Database design and normalisation techniques:

Normalise relations to third normal form
Understand why databases are normalised

4.10.4 Structured Query Language (SQL):

Be able to use SQL to retrieve, update, insert and delete data from
multiple tables of a relational database

Be able to use SQL to define a database table

4.10.5 Client server databases:

Know that a client server database system provides simultaneous
access to the database for multiple clients

Know how concurrent access can be controlled to preserve the integrity
of the database

www.pmt.education

Data models

When creating a database, you might be given requirements from which you need to
produce a data model: a plan of which things to store and what information about them
should be recorded.

Entities and attributes
In database design, an entity is a thing about which data is to be stored, for example: a
customer. Attributes are characteristics or other information about entities, for example:
the customer’s name or address.

Databases are formed of tables which are used to store multiple entities. Each entity
usually has its own row in a table and fields of that row hold the entity’s attributes.

Table: Customers

CustomerID CustomerName CustomerEmail

8836 Sue B. sue.b@gmail.com

3846 Jeremy F. jeremy-f@hotmail.com

2003 Jackie R. jackie@jackie-r.net

The table above stores information about a company’s customers. Each row in the table
holds information about one customer (one entity). The fields in each row hold information
about the customers (attributes) such as their name and email address.

Entity identifiers
When creating a database, it’s important to ensure that each
entity has an unique identifier . An entity identifier is an
attribute given to each entity which is unique within that table.
In the example above, CustomerID is most likely to be a
suitable entity identifier.

www.pmt.education

Entity description
When describing how information about an entity is to be stored in a database, an entity
description can be used.

Customer (CustomerID, CustomerName, CustomerEmail)

The entity description above describes how information about customers is stored in the
database table above. The name of the table is shown outside of brackets which contain
each of the entity’s attributes separated by commas.

Underlining can be used to identify the attribute or attributes which form the table’s entity
identifier. In this case, the attribute CustomerID has been underlined.

Relational Databases

The tables in a database can be related to each other, linked
by common attributes. There are three possible degrees of
relationship between tables in a database: one-to-one,
many-to-many and one-to-many.

Entity relationship diagrams
Entity relationship diagrams (or ER diagrams) are used to graphically represent the
relationships between tables in a database. Tables are shown as rectangles and are
joined by lines which can represent different types of relationship.

One-to-one

Many-to-many

one-to-many

Each car has one owner, and each owner has one car
(this example assumes that nobody owns multiple cars).

Each car has many passengers. Each passenger sits in
one car.

Each driver can drive many different cars. Each car is
driven by many different drivers.

www.pmt.education

Primary and foreign keys
A primary key is an attribute that provides an unique identifier for every entity in a
database table. When tables are linked by a shared attribute, the attribute must be a
primary key in one table and is called a foreign key in the other.

A foreign key is an attribute in a table which is the primary key in another , related, table.

Example: The following database tables are related to one another.

Table: Flights

FlightNo 🔑 PilotNo 🗝 Destination

ESY8876 65587 Paphos

RYN4133 13584 Dublin

BRI1101 20547 Munich

ESY5655 65587 Edinburgh

BRI8989 20547 Athens

Table: Pilots

PilotNo 🔑 PilotName

65587 Adam Triston

13584 Charlotte Green

20547 Orville Wright

The primary key in Pilots is PilotNo and is FlightNo in Flights. The tables are
linked by the shared attribute PilotNo. This makes PilotNo a foreign key in Flights.

The relationship in this example is one-to-many . Many different flight routes are operated
by the same pilot.

www.pmt.education

Many-to-many relationships
When linking many-to-many relationships, a new table has to be created. This new table is
called a link table .

The following example features the two tables Products and Customer. There is a
many-to-many relationship here as many different types of products are each bought by
many different customers.

Table: Products

ProductID 🔑 ProductName ProductPrice

155484765 Knife £18.99

233145882 Rope £4.45

366584554 Revolver £124.98

Table: Customers

CustomerName CustomerID 🔑

Professor Plum 155484765

Miss Scarlet 233145882

Reverend Green 233145882

In order to model the relationship between the tables, a new table called Orders has to be
created. This is a link table.

Table: Orders

OrderID 🔑 ProductID CustomerID

223 155484765 155484765

223 233145882 155484765

224 233145882 233145882

225 233145882 233145882

225 366584554 233145882

www.pmt.education

Database Normalisation

Databases are normalised so that they can be efficient without any compromise to the
integrity of their data . Normalising databases involves ensuring that entities contain no
redundant or repeated data .

A database that has been normalised allows for faster searching and sorting that an
unnormalised database thanks to the smaller tables created in the normalisation process.
Furthermore, normalised databases are easier to maintain than their unnormalised
counterparts.

There are three levels of normalisation that you need to know: first, second and third
normal form.

First normal form
When a database conforms to first normal form, it contains no repeating attributes . The
database’s data can be referred to as atomic (meaning that no single column contains
more than one value).

This table contains repeating attributes so is not normalised to first normal form.

Table: Staff

Name 🔑 Department Subject 🔑 DepartmentHead

John Strode Earth Sciences Geography Jackie Smith

Sarah Ng Science Chemistry Brian Jones

Mary Marsh Science Physics, Biology Brian Jones

Splitting the repeating attributes means that this database is now in first normal form.

Table: Staff

Name 🔑 Department Subject 🔑 DepartmentHead

John Strode Earth Sciences Geography Jackie Smith

Sarah Ng Science Chemistry Brian Jones

Mary Marsh Science Physics Brian Jones

Mary Marsh Science Biology Brian Jones

www.pmt.education

Second normal form
In order to meet second normal form, a database must also satisfy first normal form. In
second normal form, partial key dependencies are removed.

A partial key dependency occurs in databases with composite primary keys (a primary key
made up of multiple attributes combined) when a non-key attribute doesn’t depend on the
whole of the composite key.

In our example, the primary key is composite.

Staff (Name, Department, Subject, DepartmentHead)

Because the attribute DepartmentHead depends only on the attribute Department and
Department depends only on the attribute Subject, the tables must be modified to meet
second normal form.

Table: Staff

Name 🔑 Subject 🔑

John Strode Geography

Sarah Ng Chemistry

Mary Marsh Physics

Mary Marsh Biology

Table: SubjectDepartments Table: HeadsOfDepartment

Subject 🔑 Department Department 🔑 Head

Biology Science Science Brian Jones

Chemistry Science Earth Sciences Jackie Smith

Geography Earth Sciences

Physics Science

Creating the two tables SubjectDepartments and HeadsOfDepartment has ensured
that the database now conforms to second normal form as the partial key dependencies of
Department and DepartmentHead have been removed from the Staff table.

www.pmt.education

Third normal form
In order to meet third normal form, in addition to conforming to second normal form, a
database must have no non-key dependencies.

A database that meets third normal form can be described as follows:

All non-key attributes depend on the key, the whole key and nothing but the key

Our example meets third normal form as none of the attributes that do not form the key (or
part of a composite key) depend on the anything other than the whole key.

Structured Query Language (SQL)

SQL is a language used with databases. SQL is easy to learn and use, partly because it is
a declarative language, meaning that the programmer describes the result that’s required
rather than describing the process which should be followed.

There are four main SQL commands: SELECT, UPDATE, INSERT and DELETE.

The SELECT command
SELECT is used for retrieving data from a database table. Commands take the following
form:

SELECT <attribute> FROM <table> WHERE <condition> ORDER BY <ASC/DESC>

Note that the ORDER BY clause is optional. Let’s use the following table as an example.

Table: Flights

FlightNo 🔑 PilotNo Destination

ESY8876 13584 Glasgow

ESY1225 13584 Swansea

BRI1101 20547 Berlin

SELECT FlightNo FROM Flights WHERE Destination = ‘Berlin’
>> BRI1101

SELECT Destination FROM Flights WHERE PilotNo = ‘13584’ ORDER BY FlightNo DESC
>> Glasgow, Swansea

www.pmt.education

The UPDATE command
This command is used in databases for modifying the attributes of an existing entity and
takes the form:

UPDATE <table> SET <attribute> = <value> WHERE <attribute> = <value>

Table: Students

StudentNo 🔑 Name Email Year

55685 Aaron Aaronson a.a.aaronson@outlook.com 1

55887 Beth Hunter elisabeth.h@gmail.com 2

55622 Sam Cooper samc00per@hotmail.com 1

UPDATE Students SET Email = ‘beth24@yahoo.co.uk’ WHERE StudentNo = 55887

UPDATE Students SET Name = Samuel Cooper WHERE StudentNo = 55622

Once the two UPDATE commands above have been carried out on the table above, the
table looks like this:

Table: Students

StudentNo 🔑 Name Email Year

55685 Aaron Aaronson a.a.aaronson@outlook.com 1

55887 Beth Hunter beth24@yahoo.co.uk 2

55622 Samuel Cooper samc00per@hotmail.com 1

UPDATE commands usually use the table’s primary key to identify which entities to update but can
use more general conditions which would update all of the entities that meet the condition.

UPDATE Students SET Year = 2 WHERE StudentNO < 55700

Table: Students

StudentNo 🔑 Name Email Year

55685 Aaron Aaronson a.a.aaronson@outlook.com 2

55887 Beth Hunter beth24@yahoo.co.uk 2

55622 Samuel Cooper samc00per@hotmail.com 2

www.pmt.education

The DELETE command
As you might expect, the DELETE command is used for removing entities from a
database. The commands take the following form:

DELETE FROM <table> WHERE <condition>

Table: Cars

Model 🔑 Manufacturer 🔑 Price Year Sold

Polo Volkswagen 4995 2010 TRUE

i10 Hyundai 5225 2013 FALSE

Fiesta Ford 3995 2009 TRUE

DELETE FROM Cars WHERE Sold = TRUE

Table: Cars

Model 🔑 Manufacturer 🔑 Price Year Sold

i10 Hyundai 5225 2013 FALSE

The INSERT command
When using SQL to add new records to an existing table, the INSERT command is used.
The command usually takes the form

INSERT INTO <table> (<column1>, <column2>, …) VALUES (<value1>, <value2>, …)

but can be simplified to

INSERT INTO <table> VALUES (<value1>, <value2>, …)

when all of the columns in the table are being used in the correct order.

For example, executing the following commands would add two new records to the Cars
table.

INSERT INTO Cars VALUES (“KA”, “Ford”, 3999, 2010, FALSE)
INSERT INTO Cars (Model, Year, Manufacturer) VALUES (“E-Type”, 1970, “Jaguar”)

The first command inserts values into all columns in the correct order. The second
command inserts only some values in the wrong order, so must list columns.

www.pmt.education

Wildcards
Wildcards can be used in SQL commands to specify any possible value . For example,
rather than selecting a specific attribute in a SELECT command, a wildcard could be used
to return all attributes.

In SQL, wildcards are usually notated with an asterix. For example, using the original Cars
table from before the delete command:

SELECT * FROM Cars WHERE Price > 4000
>> [Polo, Volkswagen, 4995, 2010, TRUE], [Hyundai, 5225, 2013, FALSE]

Defining a table with SQL

SQL can be used to make new database tables with the CREATE command. This
command specifies the name of the new table, its attributes and their data types. Also
specified are entity identifiers like primary and secondary keys.

For example, the following command could be used to make a table called Artists with
the attributes Title, Artist and Date with a composite primary key composed of the
attributes Title and Artist.

CREATE TABLE Artworks (Title VARCHAR(225), Artist VARCHAR(255),
Date YEAR, PRIMARY KEY (Title, Artist))

This creates an empty table. New records can be added using the INSERT command.

Table: Artworks

Title 🔑 Artist 🔑 Date

The Night Watch Rembrandt 1642

The Persistence of Memory Salvador Dali 1931

The Great Wave off Kanagawa Hokusai 1830

www.pmt.education

SQL Data Types
Data types for attributes are specified when using the CREATE command. The data types
supported by SQL are listed in the table below.

Data type SQL Description

Fixed length
string

CHAR(size) A string with the number of
characters specified by size

Variable length
string

VARCHAR(size) A string with any number of
characters up to the number specified
by size

Integer INT(size) A whole number stored using the
number of bits specified by size

Date DATE A date in the format YYYY-MM-DD

Date and time DATETIME A date and time combined in the
format YYYY-MM-DD HH:MM:SS

Time TIME A time in the format HH:MM:SS

Year YEAR A year in one of the two formats YY
or YYYY

Client server databases

A client server database system provides simultaneous access to a database for multiple
clients. For example, social media websites store information on databases that are
continuously being accessed and modified by different users simultaneously.

Issues rarely arise when two users are requesting access to different, unrelated fields in a
database. However, when different users attempt to access the same field at the same
time, a problem known as concurrent access occurs.

Concurrent access can result in database updates being lost if two users edit a record at
the same time and can be managed with the use of record locks, serialisation, timestamp
ordering and commitment ordering.

www.pmt.education

