AQA Computer Science A-Level 4.5.3 Units of information Concise Notes # **Specification:** # 4.5.3.1 Bits and bytes: Know that: - the bit is the fundamental unit of information - a byte is a group of 8 bits Know that the 2ⁿ different values can be represented with n bits. ### 4.5.3.2 Units: Know that quantities of bytes can be described using binary prefixes representing powers of 2 or using decimal prefixes representing powers of 10, eg one kibibyte is written as $1KiB = 2^{10} B$ and one kilobyte is written as $1kB = 10^3 B$. Know the names, symbols and corresponding powers of 2 for the binary prefixes: - kibi, Ki 2¹⁰ - mebi, Mi 2²⁰ - gibi, Gi 230 - tebi, Ti 2⁴⁰ Know the names, symbols and corresponding powers of 10 for the decimal prefixes: - kilo, k 10³ - mega, M 10⁶ - giga, G 10⁹ - tera, T 10¹² ## Bits and bytes - A bit is the fundamental unit of information - A bit can only take two values, 1 and 0 - The value of a bit can be represented by a computer using high or low current - 8 bits is called a byte - 4 bits is called a nybble - Bits are notated with a lowercase b - Bytes use an uppercase B - If more bits are assigned to a number, a greater number of values can be represented - 2ⁿ different values can be represented with n bits ### **Units** - Quantities of bytes can be described using binary prefixes or decimal prefixes - Binary prefixes go up in powers of two - Decimal prefixes go up in powers of ten - Binary prefixes and decimal prefixes have similar orders of magnitude | Binary | | Decimal | | |-----------|---|----------|--| | Prefix | Value | Prefix | Value | | Kibi (Ki) | 2 ¹⁰
= 1024 | Kilo (K) | 10 ³ = 1000 | | Mebi (Mi) | 2 ²⁰
= 1048576 | Mega (M) | 10 ⁶ = 1000000 | | Gibi (Gi) | 2 ³⁰ = 1073741824 | Giga (G) | 10 ⁹ = 1000000000 | | Tebi (Ti) | 2 ⁴⁰ ≈ 1.0995×10 ¹² | Tera (T) | 10 ¹²
= 1×10 ¹² |