

AQA Computer Science A-Level 4.5.3 Units of information Concise Notes

Specification:

4.5.3.1 Bits and bytes:

Know that:

- the bit is the fundamental unit of information
- a byte is a group of 8 bits

Know that the 2ⁿ different values can be represented with n bits.

4.5.3.2 Units:

Know that quantities of bytes can be described using binary prefixes representing powers of 2 or using decimal prefixes representing powers of 10, eg one kibibyte is written as $1KiB = 2^{10} B$ and one kilobyte is written as $1kB = 10^3 B$.

Know the names, symbols and corresponding powers of 2 for the binary prefixes:

- kibi, Ki 2¹⁰
- mebi, Mi 2²⁰
- gibi, Gi 230
- tebi, Ti 2⁴⁰

Know the names, symbols and corresponding powers of 10 for the decimal prefixes:

- kilo, k 10³
- mega, M 10⁶
- giga, G 10⁹
- tera, T 10¹²

Bits and bytes

- A bit is the fundamental unit of information
- A bit can only take two values, 1 and 0
- The value of a bit can be represented by a computer using high or low current
- 8 bits is called a byte
- 4 bits is called a nybble
- Bits are notated with a lowercase b
- Bytes use an uppercase B
- If more bits are assigned to a number, a greater number of values can be represented
- 2ⁿ different values can be represented with n bits

Units

- Quantities of bytes can be described using binary prefixes or decimal prefixes
- Binary prefixes go up in powers of two
- Decimal prefixes go up in powers of ten
- Binary prefixes and decimal prefixes have similar orders of magnitude

Binary		Decimal	
Prefix	Value	Prefix	Value
Kibi (Ki)	2 ¹⁰ = 1024	Kilo (K)	10 ³ = 1000
Mebi (Mi)	2 ²⁰ = 1048576	Mega (M)	10 ⁶ = 1000000
Gibi (Gi)	2 ³⁰ = 1073741824	Giga (G)	10 ⁹ = 1000000000
Tebi (Ti)	2 ⁴⁰ ≈ 1.0995×10 ¹²	Tera (T)	10 ¹² = 1×10 ¹²